ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm

Overview

ManipulaTHOR: A Framework for Visual Object Manipulation

Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha Kembhavi, Roozbeh Mottaghi

(Oral Presentation at CVPR 2021)

(Project Page)--(Framework)--(Video)--(Slides)

We present ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm. Our framework is built upon a physics engine and enables realistic interactions with objects while navigating through scenes and performing tasks. Object manipulation is an established research domain within the robotics community and poses several challenges including avoiding collisions, grasping, and long-horizon planning. Our framework focuses primarily on manipulation in visually rich and complex scenes, joint manipulation and navigation planning, and generalization to unseen environments and objects; challenges that are often overlooked. The framework provides a comprehensive suite of sensory information and motor functions enabling development of robust manipulation agents.

This code base is based on AllenAct framework and the majority of the core training algorithms and pipelines are borrowed from AllenAct code base.

Citation

If you find this project useful in your research, please consider citing:

   @inproceedings{ehsani2021manipulathor,
     title={ManipulaTHOR: A Framework for Visual Object Manipulation},
     author={Ehsani, Kiana and Han, Winson and Herrasti, Alvaro and VanderBilt, Eli and Weihs, Luca and Kolve, Eric and Kembhavi, Aniruddha and Mottaghi, Roozbeh},
     booktitle={CVPR},
     year={2021}
   }

Contents

💻 Installation

To begin, clone this repository locally

git clone https://github.com/ehsanik/manipulathor.git
See here for a summary of the most important files/directories in this repository

Here's a quick summary of the most important files/directories in this repository:

  • utils/*.py - Helper functions and classes including the visualization helpers.
  • projects/armpointnav_baselines
    • experiments/
      • ithor/armpointnav_*.py - Different baselines introduced in the paper. Each files in this folder corresponds to a row of a table in the paper.
      • *.py - The base configuration files which define experiment setup and hyperparameters for training.
    • models/*.py - A collection of Actor-Critic baseline models.
  • plugins/ithor_arm_plugin/ - A collection of Environments, Task Samplers and Task Definitions
    • ithor_arm_environment.py - The definition of the ManipulaTHOREnvironment that wraps the AI2THOR-based framework introduced in this work and enables an easy-to-use API.
    • itho_arm_constants.py - Constants used to define the task and parameters of the environment. These include the step size taken by the agent, the unique id of the the THOR build we use, etc.
    • ithor_arm_sensors.py - Sensors which provide observations to our agents during training. E.g. the RGBSensor obtains RGB images from the environment and returns them for use by the agent.
    • ithor_arm_tasks.py - Definition of the ArmPointNav task, the reward definition and the function for calculating the goal achievement.
    • ithor_arm_task_samplers.py - Definition of the ArmPointNavTaskSampler samplers. Initializing the sampler, reading the json files from the dataset and randomly choosing a task is defined in this file.
    • ithor_arm_viz.py - Utility functions for visualization and logging the outputs of the models.

You can then install requirements by running

pip install -r requirements.txt

Python 3.6+ 🐍 . Each of the actions supports typing within Python.

AI2-THOR <43f62a0> 🧞 . To ensure reproducible results, please install this version of the AI2THOR.

📝 ArmPointNav Task Description

ArmPointNav is the goal of addressing the problem of visual object manipulation, where the task is to move an object between two locations in a scene. Operating in visually rich and complex environments, generalizing to unseen environments and objects, avoiding collisions with objects and structures in the scene, and visual planning to reach the destination are among the major challenges of this task. The example illustrates a sequence of actions taken a by a virtual robot within the ManipulaTHOR environment for picking up a vase from the shelf and stack it on a plate on the countertop.

📊 Dataset

To study the task of ArmPointNav, we present the ArmPointNav Dataset (APND). This consists of 30 kitchen scenes in AI2-THOR that include more than 150 object categories (69 interactable object categories) with a variety of shapes, sizes and textures. We use 12 pickupable categories as our target objects. We use 20 scenes in the training set and the remaining is evenly split into Val and Test. We train with 6 object categories and use the remaining to test our model in a Novel-Obj setting. For more information on dataset, and how to download it refer to Dataset Details.

🖼️ Sensory Observations

The types of sensors provided for this paper include:

  1. RGB images - having shape 224x224x3 and an FOV of 90 degrees.
  2. Depth maps - having shape 224x224 and an FOV of 90 degrees.
  3. Perfect egomotion - We allow for agents to know precisely what the object location is relative to the agent's arm as well as to its goal location.

🏃 Allowed Actions

A total of 13 actions are available to our agents, these include:

  1. Moving the agent
  • MoveAhead - Results in the agent moving ahead by 0.25m if doing so would not result in the agent colliding with something.

  • Rotate [Right/Left] - Results in the agent's body rotating 45 degrees by the desired direction.

  1. Moving the arm
  • Moving the wrist along axis [x, y, z] - Results in the arm moving along an axis (±x,±y, ±z) by 0.05m.

  • Moving the height of the arm base [Up/Down] - Results in the base of the arm moving along y axis by 0.05m.

  1. Abstract Grasp
  • Picks up a target object. Only succeeds if the object is inside the arm grasper.
  1. Done Action
  • This action finishes an episode. The agent must issue a Done action when it reaches the goal otherwise the episode considers as a failure.

Defining a New Task

In order to define a new task, redefine the rewarding, try a new model, or change the enviornment setup, checkout our tutorial on defining a new task here.

🏋 Training An Agent

You can train a model with a specific experiment setup by running one of the experiments below:

python3 main.py -o experiment_output -s 1 -b projects/armpointnav_baselines/experiments/ithor/ <EXPERIMENT-NAME>

Where <EXPERIMENT-NAME> can be one of the options below:

armpointnav_no_vision -- No Vision Baseline
armpointnav_disjoint_depth -- Disjoint Model Ablation
armpointnav_rgb -- Our RGB Experiment
armpointnav_rgbdepth -- Our RGBD Experiment
armpointnav_depth -- Our Depth Experiment

💪 Evaluating A Pre-Trained Agent

To evaluate a pre-trained model, (for example to reproduce the numbers in the paper), you can add --mode test -c <WEIGHT-ADDRESS> to the end of the command you ran for training.

In order to reproduce the numbers in the paper, you need to download the pretrained models from here and extract them to pretrained_models. The full list of experiments and their corresponding trained weights can be found here.

python3 main.py -o experiment_output -s 1 -b projects/armpointnav_baselines/experiments/ithor/ <EXPERIMENT-NAME> --mode test -c <WEIGHT-ADDRESS>
UDP++ (ECCVW 2020 Oral), (Winner of COCO 2020 Keypoint Challenge).

UDP-Pose This is the pytorch implementation for UDP++, which won the Fisrt place in COCO Keypoint Challenge at ECCV 2020 Workshop. Top-Down Results on

20 Jul 29, 2022
Bib-parser - Convenient script to parse .bib files with the ACM Digital Library like metadata

Bib Parser Convenient script to parse .bib files with the ACM Digital Library li

Mehtab Iqbal (Shahan) 1 Jan 26, 2022
Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Table of Content Introduction Datasets Getting Started Requirements Usage Example Training & Evaluation CPM: Color-Pattern Makeup Transfer CPM is a ho

VinAI Research 248 Dec 13, 2022
Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)

Greedy Gradient Ensemble for De-biased VQA Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can

21 Jun 29, 2022
The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

SCOOD-UDG (ICCV 2021) This repository is the official implementation of the paper: Semantically Coherent Out-of-Distribution Detection Jingkang Yang,

Jake YANG 62 Nov 21, 2022
ICCV2021 Papers with Code

ICCV2021 Papers with Code

Amusi 1.4k Jan 02, 2023
Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Monk - A computer vision toolkit for everyone Why use Monk Issue: Want to begin learning computer vision Solution: Start with Monk's hands-on study ro

Tessellate Imaging 507 Dec 04, 2022
My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

yobi byte 29 Oct 09, 2022
A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

sam4onnx A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for

Katsuya Hyodo 6 May 15, 2022
Autoregressive Models in PyTorch.

Autoregressive This repository contains all the necessary PyTorch code, tailored to my presentation, to train and generate data from WaveNet-like auto

Christoph Heindl 41 Oct 09, 2022
Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 87 Jan 03, 2023
Neural Module Network for VQA in Pytorch

Neural Module Network (NMN) for VQA in Pytorch Note: This is NOT an official repository for Neural Module Networks. NMN is a network that is assembled

Harsh Trivedi 111 Nov 24, 2022
Async API for controlling Hue Lights

Hue API Async API for controlling Hue Lights Documentation: hue-api.nirantak.com Source: github.com/nirantak/hue-api Installation This is an async cli

Nirantak Raghav 4 Nov 16, 2022
Pyramid addon for OpenAPI3 validation of requests and responses.

Validate Pyramid views against an OpenAPI 3.0 document Peace of Mind The reason this package exists is to give you peace of mind when providing a REST

Pylons Project 79 Dec 30, 2022
Image Captioning on google cloud platform based on iot

Image-Captioning-on-google-cloud-platform-based-on-iot - Image Captioning on google cloud platform based on iot

Shweta_kumawat 1 Jan 20, 2022
Official implementation of the article "Unsupervised JPEG Domain Adaptation For Practical Digital Forensics"

Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics @WIFS2021 (Montpellier, France) Rony Abecidan, Vincent Itier, Jeremie Boulan

Rony Abecidan 6 Jan 06, 2023
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 111 Dec 18, 2022
SimplEx - Explaining Latent Representations with a Corpus of Examples

SimplEx - Explaining Latent Representations with a Corpus of Examples Code Author: Jonathan Crabbé ( Jonathan Crabbé 14 Dec 15, 2022

A transformer-based method for Healthcare Image Captioning in Vietnamese

vieCap4H Challenge 2021: A transformer-based method for Healthcare Image Captioning in Vietnamese This repo GitHub contains our solution for vieCap4H

Doanh B C 4 May 05, 2022
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022