K Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching (To appear in RA-L 2022)

Overview

KCP

License Build

The official implementation of KCP: k Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching, accepted for publication in the IEEE Robotics and Automation Letters (RA-L).

KCP is an efficient and effective local point cloud registration approach targeting for real-world 3D LiDAR scan matching problem. A simple (and naive) understanding is: ICP iteratively considers the closest point of each source point, but KCP considers the k closest points of each source point in the beginning, and outlier correspondences are mainly rejected by the maximum clique pruning method. KCP is written in C++ and we also support Python binding of KCP (pykcp).

For more, please refer to our paper:

  • Yu-Kai Lin, Wen-Chieh Lin, Chieh-Chih Wang, KCP: k-Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching. To appear in IEEE Robotics and Automation Letters (RA-L), 2022. (pdf) (code) (video)

If you use this project in your research, please cite:

@article{lin2022kcp,
  title={{KCP: k-Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching}},
  author={Lin, Yu-Kai and Lin, Wen-Chieh and Wang, Chieh-Chih},
  journal={IEEE Robotics and Automation Letters},
  volume={#},
  number={#},
  pages={#--#},
  year={2022},
}

and if you find this project helpful or interesting, please Star the repository. Thank you!

Table of Contents

📦 Resources

⚙️ Installation

The project is originally developed in Ubuntu 18.04, and the following instruction supposes that you are using Ubuntu 18.04 as well. I am not sure if it also works with other Ubuntu versions or other Linux distributions, but maybe you can give it a try 👍

Also, please feel free to open an issue if you encounter any problems of the following instruction.

Step 1. Preparing the Dependencies

You have to prepare the following packages or libraries used in KCP:

  1. A C++ compiler supporting C++14 and OpenMP (e.g. GCC 7.5).
  2. CMake3.11
  3. Git
  4. Eigen3 ≥ 3.3
  5. nanoflann
  6. TEASER++d79d0c67

GCC, CMake, Git, and Eigen3

sudo apt update
sudo apt install -y g++ build-essential libeigen3-dev git

sudo apt install -y software-properties-common lsb-release
wget -O - https://apt.kitware.com/keys/kitware-archive-latest.asc 2>/dev/null | gpg --dearmor - | sudo tee /etc/apt/trusted.gpg.d/kitware.gpg >/dev/null
sudo apt update
sudo apt install cmake

nanoflann

cd ~
git clone https://github.com/jlblancoc/nanoflann
cd nanoflann
mkdir build && cd build
cmake .. -DNANOFLANN_BUILD_EXAMPLES=OFF -DNANOFLANN_BUILD_TESTS=OFF
make
sudo make install

TEASER++

cd ~
git clone https://github.com/MIT-SPARK/TEASER-plusplus
cd TEASER-plusplus
git checkout d79d0c67
mkdir build && cd build
cmake .. -DBUILD_TESTS=OFF -DBUILD_PYTHON_BINDINGS=OFF -DBUILD_DOC=OFF
make
sudo make install

Step 2. Preparing Dependencies of Python Binding (Optional)

The Python binding of KCP (pykcp) uses pybind11 to achieve operability between C++ and Python. KCP will automatically download and compile pybind11 during the compilation stage. However, you need to prepare a runable Python environment with header files for the Python C API (python3-dev):

sudo apt install -y python3 python3-dev

Step 3. Building KCP

Execute the following commands to build KCP:

Without Python Binding

git clone https://github.com/StephLin/KCP
cd KCP
mkdir build && cd build
cmake ..
make

With Python Binding

git clone https://github.com/StephLin/KCP
cd KCP
mkdir build && cd build
cmake .. -DKCP_BUILD_PYTHON_BINDING=ON -DPYTHON_EXECUTABLE=$(which python3)
make

Step 4. Installing KCP to the System (Optional)

This will make the KCP library available in the system, and any C++ (CMake) project can find the package by find_package(KCP). Think twice before you enter the following command!

# Under /path/to/KCP/build
sudo make install

🌱 Examples

We provide two examples (one for C++ and the other for Python 3) These examples take nuScenes' LiDAR data to perform registration. Please check

for more information.

📝 Some Remarks

Tuning Parameters

The major parameters are

  • kcp::KCP::Params::k and
  • kcp::KCP::Params::teaser::noise_bound,

where k is the number of nearest points of each source point selected to be part of initial correspondences, and noise_bound is the criterion to determine if a correspondence is correct. In our paper, we suggest k=2 and noise_bound the 3-sigma (we use noise_bound=0.06 meters for nuScenes data), and those are default values in the library.

To use different parameters to the KCP solver, please refer to the following snippets:

C++

#include <kcp/solver.hpp>

auto params = kcp::KCP::Params();

params.k                  = 2;
params.teaser.noise_bound = 0.06;

auto solver = kcp::KCP(params);

Python

import pykcp

params = pykcp.KCPParams()
params.k = 2
params.teaser.noise_bound = 0.06

solver = pykcp.KCP(params)

Controlling Computational Cost

Instead of correspondence-free registration in TEASER++, KCP considers k closest point correspondences to reduce the major computational cost of the maximum clique algorithm, and we have expressed the ability for real-world scenarios without any complicate or learning-based feature descriptor in the paper. However, it is still possible to encounter computational time or memory issue if there are too many correspondences fed to the solver.

We suggest controlling your keypoints around 500 for k=2 (in this way the computational time will be much closer to the one presented in the paper).

Torwarding Global Registration Approaches

It is promising that KCP can be extended to a global registration approach if a fast and reliable sparse feature point representation method is employed.

In this way, the role of RANSAC, a fast registration approach usually used in learning based approaches, is similar to KCP's, but the computation results of KCP are deterministic, and also, KCP has better theoretical supports.

🎁 Acknowledgement

This project refers to the computation of the smoothness term defined in LOAM (implemented in Tixiao Shan's excellent project LIO-SAM, which is licensed under BSD-3). We modified the definition of the smoothness term (and it is called the multi-scale curvature in this project).

Owner
Yu-Kai Lin
Studying for a master program of Computer Science in NCTU, Taiwan.
Yu-Kai Lin
Only works with the dashboard version / branch of jesse

Jesse optuna Only works with the dashboard version / branch of jesse. The config.yml should be self-explainatory. Installation # install from git pip

Markus K. 8 Dec 04, 2022
VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries

VACA Code repository for the paper "VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries (arXiv)". The impleme

Pablo Sánchez-Martín 16 Oct 10, 2022
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Sicheng Xu 833 Dec 28, 2022
Prefix-Tuning: Optimizing Continuous Prompts for Generation

Prefix Tuning Files: . ├── gpt2 # Code for GPT2 style autoregressive LM │ ├── train_e2e.py # high-level script

530 Jan 04, 2023
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
Image Segmentation Evaluation

Image Segmentation Evaluation Martin Keršner, [email protected] Evaluation

Martin Kersner 273 Oct 28, 2022
SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks Molecular interaction networks are powerful resources for the discovery. While dee

Kexin Huang 49 Oct 15, 2022
aka "Bayesian Methods for Hackers": An introduction to Bayesian methods + probabilistic programming with a computation/understanding-first, mathematics-second point of view. All in pure Python ;)

Bayesian Methods for Hackers Using Python and PyMC The Bayesian method is the natural approach to inference, yet it is hidden from readers behind chap

Cameron Davidson-Pilon 25.1k Jan 02, 2023
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Iranian Cars Detection using Yolov5s, PyTorch

Iranian Cars Detection using Yolov5 Train 1- git clone https://github.com/ultralytics/yolov5 cd yolov5 pip install -r requirements.txt 2- Dataset ../

Nahid Ebrahimian 22 Dec 05, 2022
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* Any questions or discussions ar

sunshine.lwt 112 Jan 05, 2023
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
Cobalt Strike teamserver detection.

Cobalt-Strike-det Cobalt Strike teamserver detection. usage: cobaltstrike_verify.py [-l TARGETS] [-t THREADS] optional arguments: -h, --help show this

TimWhite 17 Sep 27, 2022
DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021)

DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021) This repo is the implementation of DPC. Tested environment Pyth

Dvir Ginzburg 30 Nov 30, 2022
Original Implementation of Prompt Tuning from Lester, et al, 2021

Prompt Tuning This is the code to reproduce the experiments from the EMNLP 2021 paper "The Power of Scale for Parameter-Efficient Prompt Tuning" (Lest

Google Research 282 Dec 28, 2022
Random-Afg - Afghanistan Random Old Idz Cloner Tools

AFGHANISTAN RANDOM OLD IDZ CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 5 Jan 26, 2022
Tools for the Cleveland State Human Motion and Control Lab

Introduction This is a collection of tools that are helpful for gait analysis. Some are specific to the needs of the Human Motion and Control Lab at C

CSU Human Motion and Control Lab 88 Dec 16, 2022
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

43 Nov 19, 2022
ISBI 2022: Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image.

Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image Introduction This repository contains the PyTorch implem

25 Nov 09, 2022
Geometric Sensitivity Decomposition

Geometric Sensitivity Decomposition This repo is the official implementation of A Geometric Perspective towards Neural Calibration via Sensitivity Dec

16 Dec 26, 2022