PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

Overview

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

This is the PyTorch implementation of our paper:
FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning
Chia-Wen Kuo, Chih-Yao Ma, Jia-Bin Huang, Zsolt Kira
European Conference on Computer Vision (ECCV), 2020
[arXiv] [Project]

Abstract

Recent state-of-the-art semi-supervised learning (SSL) methods use a combination of image-based transformations and consistency regularization as core components. Such methods, however, are limited to simple transformations such as traditional data augmentation or convex combinations of two images. In this paper, we propose a novel learned feature-based refinement and augmentation method that produces a varied set of complex transformations. Importantly, these transformations also use information from both within-class and across-class prototypical representations that we extract through clustering. We use features already computed across iterations by storing them in a memory bank, obviating the need for significant extra computation. These transformations, combined with traditional image-based augmentation, are then used as part of the consistency-based regularization loss. We demonstrate that our method is comparable to current state of art for smaller datasets (CIFAR-10 and SVHN) while being able to scale up to larger datasets such as CIFAR-100 and mini-Imagenet where we achieve significant gains over the state of art (e.g., absolute 17.44% gain on mini-ImageNet). We further test our method on DomainNet, demonstrating better robustness to out-of-domain unlabeled data, and perform rigorous ablations and analysis to validate the method.

Installation

Prequesites

  • python == 3.7
  • pytorch == 1.6
  • torchvision == 0.7

Install python dependencies:

pip install -r requirements.txt

To augment data faster, we recommend using Pillow-SIMD.

Note: this project was developed under torch==1.4 originally. During code release, it is ported to torch==1.6 for the native support of automatic mixed precision (amp) training. The numbers are slightly different from those on the paper but are within the std margins.

Datasets

Download/Extract the following datasets to the dataset folder under the project root directory.

  • For SVHN, download train and test sets here.

  • For CIFAR-10 and CIFAR-100, download the python version dataset here.

  • For mini-ImageNet, use the following command to extract mini-ImageNet from ILSVRC-12:

    python3 dataloader/mini_imagenet.py -sz 128 \
     -sd [ILSVRC-12_ROOT] \
     -dd dataset/mini-imagenet
    

    Replace [ILSVRC-12_ROOT] with the root folder of your local ILSVRC-12 dataset.

  • For DomainNet, use the following command to download the domains:

    python3 dataloader/domainnet.py -r dataset/domainnet
    

Training

All commands should be run under the project root directory.

Running arguments

-cf CONFIG: training config
-d GPU_IDS: GPUs where the model is trained on
-n SAVE_ROOT: root directory where the checkpoints are saved to
-i ITERS: number of runs for average performance

CIFAR-100

# 4k labels
python3 train/featmatch.py -cf config/cifar100/[cifar100][test][cnn13][4000].json -d 0 1 -n [cifar100][test][cnn13][4000] -i 3 -o -a

# 10k labels
python3 train/featmatch.py -cf config/cifar100/[cifar100][test][cnn13][10000].json -d 0 1 -n [cifar100][test][cnn13][10000] -i 3 -o -a

mini-ImageNet

# 4k labels
python3 train/featmatch.py -cf config/mini-imagenet/[mimagenet][test][res18][4000].json -d 0 1 -n [mimagenet][test][res18][4000] -i 3 -o -a

# 10k lables
python3 train/featmatch.py -cf config/mini-imagenet/[mimagenet][test][res18][10000].json -d 0 1 -n [mimagenet][test][res18][10000] -i 3 -o -a

DomainNet

# ru = 0%
python3 train/featmatch.py -cf config/domainnet/[domainnet][test][res18][rl5-ru00].json -d 0 1 -n [domainnet][test][res18][rl5-ru00] -i 3 -a

# ru = 25%
python3 train/featmatch.py -cf config/domainnet/[domainnet][test][res18][rl5-ru25].json -d 0 1 -n [domainnet][test][res18][rl5-ru25] -i 3 -a

# ru = 50%
python3 train/featmatch.py -cf config/domainnet/[domainnet][test][res18][rl5-ru50].json -d 0 1 -n [domainnet][test][res18][rl5-ru50] -i 3 -a

# ru = 75%
python3 train/featmatch.py -cf config/domainnet/[domainnet][test][res18][rl5-ru75].json -d 0 1 -n [domainnet][test][res18][rl5-ru75] -i 3 -a

SVHN

# 250 labels
python3 train/featmatch.py -cf config/svhn/[svhn][test][wrn][250].json -d 0 1 -n [svhn][test][wrn][250] -i 3 -o -a

# 1k labels
python3 train/featmatch.py -cf config/svhn/[svhn][test][wrn][1000].json -d 0 1 -n [svhn][test][wrn][1000] -i 3 -o -a

# 4k labels
python3 train/featmatch.py -cf config/svhn/[svhn][test][wrn][4000].json -d 0 1 -n [svhn][test][wrn][4000] -i 3 -o -a

CIFAR-10

# 250 labels
python3 train/featmatch.py -cf config/cifar10/[cifar10][test][wrn][250].json -d 0 1 -n [cifar10][test][wrn][250] -i 3 -o -a

# 1k labels
python3 train/featmatch.py -cf config/cifar10/[cifar10][test][wrn][1000].json -d 0 1 -n [cifar10][test][wrn][1000] -i 3 -o -a

# 4k labels
python3 train/featmatch.py -cf config/cifar10/[cifar10][test][wrn][4000].json -d 0 1 -n [cifar10][test][wrn][4000] -i 3 -o -a

Results

Here are the quantitative results on different datasets, with different number of labels. Numbers represent error rate in three runs (lower the better).

For CIFAR-100, mini-ImageNet, CIFAR-10, and SVHN, we follow the conventional evaluation method. The model is evaluated directly on the test set, and the median of the last K (K=10 in our case) testing accuracies is reported.

For our proposed DomainNet setting, we reserve 1% of validation data, which is much fewer than the 5% of labeled data. The model is evaluated on the validation data, and the model with the best validation accuracy is selected. Finally, we report the test accuracy of the selected model.

CIFAR-100

#labels 4k 10k
paper 31.06 ± 0.41 26.83 ± 0.04
repo 30.79 ± 0.35 26.88 ± 0.13

mini-ImageNet

#labels 4k 10k
paper 39.05 ± 0.06 34.79 ± 0.22
repo 38.94 ± 0.19 34.84 ± 0.19

DomainNet

ru 0% 25% 50% 75%
paper 40.66 ± 0.60 46.11 ± 1.15 54.01 ± 0.66 58.30 ± 0.93
repo 40.47 ± 0.23 43.40 ± 0.25 52.49 ± 1.06 56.20 ± 1.25

SVHN

#labels 250 1k 4k
paper 3.34 ± 0.19 3.10 ± 0.06 2.62 ± 0.08
repo 3.62 ± 0.12 3.02 ± 0.04 2.61 ± 0.02

CIFAR-10

#labels 250 1k 4k
paper 7.50 ± 0.64 5.76 ± 0.07 4.91 ± 0.18
repo 7.38 ± 0.94 6.04 ± 0.24 5.19 ± 0.05

Acknowledgement

This work was funded by DARPA’s Learning with Less Labels (LwLL) program under agreement HR0011-18-S-0044 and DARPAs Lifelong Learning Machines (L2M) program under Cooperative Agreement HR0011-18-2-0019.

Citation

@inproceedings{kuo2020featmatch,
  title={Featmatch: Feature-based augmentation for semi-supervised learning},
  author={Kuo, Chia-Wen and Ma, Chih-Yao and Huang, Jia-Bin and Kira, Zsolt},
  booktitle={European Conference on Computer Vision},
  pages={479--495},
  year={2020},
  organization={Springer}
}
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring.

Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,

Syed Waqas Zamir 906 Dec 30, 2022
Digan - Official PyTorch implementation of Generating Videos with Dynamics-aware Implicit Generative Adversarial Networks

DIGAN (ICLR 2022) Official PyTorch implementation of "Generating Videos with Dyn

Sihyun Yu 147 Dec 31, 2022
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Project Page | Paper A Shading-Guided Generative Implicit Model

Xingang Pan 115 Dec 18, 2022
PyTorch implementation of Lip to Speech Synthesis with Visual Context Attentional GAN (NeurIPS2021)

Lip to Speech Synthesis with Visual Context Attentional GAN This repository contains the PyTorch implementation of the following paper: Lip to Speech

6 Nov 02, 2022
Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi.

Spchcat Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi. Description spchcat is a command-line tool that read

Pete Warden 279 Jan 03, 2023
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

Shikhar Bahl 47 Dec 11, 2022
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

Diplodocus 258 Jan 02, 2023
Churn prediction

Churn-prediction Churn-prediction Data preprocessing:: Label encoder is used to normalize the categorical variable Data Transformation:: For each data

1 Sep 28, 2022
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse

Visual Inference Lab @TU Darmstadt 85 Dec 22, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

STARS Laboratory 8 Sep 14, 2022
Language Models for the legal domain in Spanish done @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish legal domain Language Model ⚖️ This repository contains the page for two main resources for the Spanish legal domain: A RoBERTa model: https:/

Plan de Tecnologías del Lenguaje - Gobierno de España 12 Nov 14, 2022
Diverse graph algorithms implemented using JGraphT library.

# 1. Installing Maven & Pandas First, please install Java (JDK11) and Python 3 if they are not already. Next, make sure that Maven (for importing J

See Woo Lee 3 Dec 17, 2022
Safe Policy Optimization with Local Features

Safe Policy Optimization with Local Feature (SPO-LF) This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization wi

Akifumi Wachi 6 Jun 05, 2022
3D Generative Adversarial Network

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling This repository contains pre-trained models and sampling

Chengkai Zhang 791 Dec 20, 2022
No Code AI/ML platform

NoCodeAIML No Code AI/ML platform - Community Edition Video credits: Uday Kiran Typical No Code AI/ML Platform will have features like drag and drop,

Bhagvan Kommadi 5 Jan 28, 2022
[ICCV 2021 Oral] SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer

This repository contains the source code for the paper SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer (ICCV 2021 Oral). The project page is here.

AllenXiang 65 Dec 26, 2022
[NeurIPS 2021] Low-Rank Subspaces in GANs

Low-Rank Subspaces in GANs Figure: Image editing results using LowRankGAN on StyleGAN2 (first three columns) and BigGAN (last column). Low-Rank Subspa

112 Dec 28, 2022
A Tensorflow implementation of BicycleGAN.

BicycleGAN implementation in Tensorflow As part of the implementation series of Joseph Lim's group at USC, our motivation is to accelerate (or sometim

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 97 Dec 02, 2022
Sound Source Localization for AI Grand Challenge 2021

Sound-Source-Localization Sound Source Localization study for AI Grand Challenge 2021 (sponsored by NC Soft Vision Lab) Preparation 1. Place the data-

sanghoon 19 Mar 29, 2022
Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration

This repo is for the paper: Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration The DAC environment is based on the Dynam

Carola Doerr 1 Aug 19, 2022