PyTorch implementation of Lip to Speech Synthesis with Visual Context Attentional GAN (NeurIPS2021)

Overview

Lip to Speech Synthesis with Visual Context Attentional GAN

This repository contains the PyTorch implementation of the following paper:

Lip to Speech Synthesis with Visual Context Attentional GAN
Minsu Kim, Joanna Hong, and Yong Man Ro
[Paper] [Demo Video]

Preparation

Requirements

  • python 3.7
  • pytorch 1.6 ~ 1.8
  • torchvision
  • torchaudio
  • ffmpeg
  • av
  • tensorboard
  • scikit-image
  • pillow
  • librosa
  • pystoi
  • pesq
  • scipy

Datasets

Download

GRID dataset (video normal) can be downloaded from the below link.

For data preprocessing, download the face landmark of GRID from the below link.

Preprocessing

After download the dataset, preprocess the dataset with the following scripts in ./preprocess.
It supposes the data directory is constructed as

Data_dir
├── subject
|   ├── video
|   |   └── xxx.mpg
  1. Extract frames
    Extract_frames.py extract images and audio from the video.
python Extract_frames.py --Grid_dir "Data dir of GRID_corpus" --Out_dir "Output dir of images and audio of GRID_corpus"
  1. Align faces and audio processing
    Preprocess.py aligns faces and generates videos, which enables cropping the video lip-centered during training.
python Preprocess.py \
--Data_dir "Data dir of extracted images and audio of GRID_corpus" \
--Landmark "Downloaded landmark dir of GRID" \
--Output_dir "Output dir of processed data"

Training the Model

The speaker setting (different subject) can be selected by subject argument. Please refer to below examples.
To train the model, run following command:

# Data Parallel training example using 4 GPUs for multi-speaker setting in GRID
python train.py \
--grid 'enter_the_processed_data_path' \
--checkpoint_dir 'enter_the_path_to_save' \
--batch_size 88 \
--epochs 500 \
--subject 'overlap' \
--eval_step 720 \
--dataparallel \
--gpu 0,1,2,3
# 1 GPU training example for GRID for unseen-speaker setting in GRID
python train.py \
--grid 'enter_the_processed_data_path' \
--checkpoint_dir 'enter_the_path_to_save' \
--batch_size 22 \
--epochs 500 \
--subject 'unseen' \
--eval_step 1000 \
--gpu 0

Descriptions of training parameters are as follows:

  • --grid: Dataset location (grid)
  • --checkpoint_dir: directory for saving checkpoints
  • --checkpoint : saved checkpoint where the training is resumed from
  • --batch_size: batch size
  • --epochs: number of epochs
  • --augmentations: whether performing augmentation
  • --dataparallel: Use DataParallel
  • --subject: different speaker settings, s# is speaker specific training, overlap for multi-speaker setting, unseen for unseen-speaker setting, four for four speaker training
  • --gpu: gpu number for training
  • --lr: learning rate
  • --eval_step: steps for performing evaluation
  • --window_size: number of frames to be used for training
  • Refer to train.py for the other training parameters

The evaluation during training is performed for a subset of the validation dataset due to the heavy time costs of waveform conversion (griffin-lim).
In order to evaluate the entire performance of the trained model run the test code (refer to "Testing the Model" section).

check the training logs

tensorboard --logdir='./runs/logs to watch' --host='ip address of the server'

The tensorboard shows the training and validation loss, evaluation metrics, generated mel-spectrogram, and audio

Testing the Model

To test the model, run following command:

# Dataparallel test example for multi-speaker setting in GRID
python test.py \
--grid 'enter_the_processed_data_path' \
--checkpoint 'enter_the_checkpoint_path' \
--batch_size 100 \
--subject 'overlap' \
--save_mel \
--save_wav \
--dataparallel \
--gpu 0,1

Descriptions of training parameters are as follows:

  • --grid: Dataset location (grid)
  • --checkpoint : saved checkpoint where the training is resumed from
  • --batch_size: batch size
  • --dataparallel: Use DataParallel
  • --subject: different speaker settings, s# is speaker specific training, overlap for multi-speaker setting, unseen for unseen-speaker setting, four for four speaker training
  • --save_mel: whether to save the 'mel_spectrogram' and 'spectrogram' in .npz format
  • --save_wav: whether to save the 'waveform' in .wav format
  • --gpu: gpu number for training
  • Refer to test.py for the other parameters

Test Automatic Speech Recognition (ASR) results of generated results: WER

Transcription (Ground-truth) of GRID dataset can be downloaded from the below link.

move to the ASR_model directory

cd ASR_model/GRID

To evaluate the WER, run following command:

# test example for multi-speaker setting in GRID
python test.py \
--data 'enter_the_generated_data_dir (mel or wav) (ex. ./../../test/spec_mel)' \
--gtpath 'enter_the_downloaded_transcription_path' \
--subject 'overlap' \
--gpu 0

Descriptions of training parameters are as follows:

  • --data: Data for evaluation (wav or mel(.npz))
  • --wav : whether the data is waveform or not
  • --batch_size: batch size
  • --subject: different speaker settings, s# is speaker specific training, overlap for multi-speaker setting, unseen for unseen-speaker setting, four for four speaker training
  • --gpu: gpu number for training
  • Refer to ./ASR_model/GRID/test.py for the other parameters

Pre-trained ASR model checkpoint

Below lists are the pre-trained ASR model to evaluate the generated speech.
WER shows the original performances of the model on ground-truth audio.

Setting WER
GRID (constrained-speaker) 0.83 %
GRID (multi-speaker) 1.67 %
GRID (unseen-speaker) 0.37 %
LRW 1.54 %

Put the checkpoints in ./ASR_model/GRID/data for GRID, and in ./ASR_model/LRW/data for LRW.

Citation

If you find this work useful in your research, please cite the paper:

@article{kim2021vcagan,
  title={Lip to Speech Synthesis with Visual Context Attentional GAN},
  author={Kim, Minsu and Hong, Joanna and Ro, Yong Man},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}
[ICLR2021oral] Rethinking Architecture Selection in Differentiable NAS

DARTS-PT Code accompanying the paper ICLR'2021: Rethinking Architecture Selection in Differentiable NAS Ruochen Wang, Minhao Cheng, Xiangning Chen, Xi

Ruochen Wang 86 Dec 27, 2022
4D Human Body Capture from Egocentric Video via 3D Scene Grounding

4D Human Body Capture from Egocentric Video via 3D Scene Grounding [Project] [Paper] Installation: Our method requires the same dependencies as SMPLif

Miao Liu 37 Nov 08, 2022
Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021

Geometric Vector Perceptron Implementation of Geometric Vector Perceptron, a simple circuit with 3d rotation equivariance for learning over large biom

Phil Wang 59 Nov 24, 2022
A simple image/video to Desmos graph converter run locally

Desmos Bezier Renderer A simple image/video to Desmos graph converter run locally Sample Result Setup Install dependencies apt update apt install git

Kevin JY Cui 339 Dec 23, 2022
Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting

Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting Note: You can find here the accompanying seq2seq RNN forecas

Guillaume Chevalier 1k Dec 25, 2022
PyMove is a Python library to simplify queries and visualization of trajectories and other spatial-temporal data

Use PyMove and go much further Information Package Status License Python Version Platforms Build Status PyPi version PyPi Downloads Conda version Cond

Insight Data Science Lab 64 Nov 15, 2022
Use CLIP to represent video for Retrieval Task

A Straightforward Framework For Video Retrieval Using CLIP This repository contains the basic code for feature extraction and replication of results.

Jesus Andres Portillo Quintero 54 Dec 22, 2022
Find the Heart simple Python Game

This is a simple Python game for finding a heart emoji. There is a 3 x 3 matrix in which a heart emoji resides. The location of the heart is randomized and is not revealed. The player must guess the

p.katekomol 1 Jan 24, 2022
PiRapGenerator - Make anyone rap the digits of pi

PiRapGenerator Make anyone rap the digits of pi (sample files are of Ted Nivison

7 Oct 02, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Semantic Segmentation.

Swin Transformer for Semantic Segmentation of satellite images This repo contains the supported code and configuration files to reproduce semantic seg

23 Oct 10, 2022
MaRS - a recursive filtering framework that allows for truly modular multi-sensor integration

The Modular and Robust State-Estimation Framework, or short, MaRS, is a recursive filtering framework that allows for truly modular multi-sensor integration

Control of Networked Systems - University of Klagenfurt 143 Dec 29, 2022
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016

Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo

1.4k Jan 01, 2023
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 885 Jan 01, 2023
Social Distancing Detector

Computer vision has opened up a lot of opportunities to explore into AI domain that were earlier highly limited. Here is an application of haarcascade classifier and OpenCV to develop a social distan

Ashish Pandey 2 Jul 18, 2022
Official pytorch implementation for Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion (CVPR 2022)

Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion This repository contains a pytorch implementation of "Learning to Listen: Modeling

50 Dec 17, 2022
Human annotated noisy labels for CIFAR-10 and CIFAR-100.

Dataloader for CIFAR-N CIFAR-10N noise_label = torch.load('./data/CIFAR-10_human.pt') clean_label = noise_label['clean_label'] worst_label = noise_lab

<a href=[email protected]"> 117 Nov 30, 2022
Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization

FAC-Net Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization Linjiang Huang (CUHK), Liang Wang (CASIA), Hongsheng

21 Nov 22, 2022
Roger Labbe 13k Dec 29, 2022
An efficient and easy-to-use deep learning model compression framework

TinyNeuralNetwork 简体中文 TinyNeuralNetwork is an efficient and easy-to-use deep learning model compression framework, which contains features like neura

Alibaba 441 Dec 25, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022