PyTorch implementation of Lip to Speech Synthesis with Visual Context Attentional GAN (NeurIPS2021)

Overview

Lip to Speech Synthesis with Visual Context Attentional GAN

This repository contains the PyTorch implementation of the following paper:

Lip to Speech Synthesis with Visual Context Attentional GAN
Minsu Kim, Joanna Hong, and Yong Man Ro
[Paper] [Demo Video]

Preparation

Requirements

  • python 3.7
  • pytorch 1.6 ~ 1.8
  • torchvision
  • torchaudio
  • ffmpeg
  • av
  • tensorboard
  • scikit-image
  • pillow
  • librosa
  • pystoi
  • pesq
  • scipy

Datasets

Download

GRID dataset (video normal) can be downloaded from the below link.

For data preprocessing, download the face landmark of GRID from the below link.

Preprocessing

After download the dataset, preprocess the dataset with the following scripts in ./preprocess.
It supposes the data directory is constructed as

Data_dir
├── subject
|   ├── video
|   |   └── xxx.mpg
  1. Extract frames
    Extract_frames.py extract images and audio from the video.
python Extract_frames.py --Grid_dir "Data dir of GRID_corpus" --Out_dir "Output dir of images and audio of GRID_corpus"
  1. Align faces and audio processing
    Preprocess.py aligns faces and generates videos, which enables cropping the video lip-centered during training.
python Preprocess.py \
--Data_dir "Data dir of extracted images and audio of GRID_corpus" \
--Landmark "Downloaded landmark dir of GRID" \
--Output_dir "Output dir of processed data"

Training the Model

The speaker setting (different subject) can be selected by subject argument. Please refer to below examples.
To train the model, run following command:

# Data Parallel training example using 4 GPUs for multi-speaker setting in GRID
python train.py \
--grid 'enter_the_processed_data_path' \
--checkpoint_dir 'enter_the_path_to_save' \
--batch_size 88 \
--epochs 500 \
--subject 'overlap' \
--eval_step 720 \
--dataparallel \
--gpu 0,1,2,3
# 1 GPU training example for GRID for unseen-speaker setting in GRID
python train.py \
--grid 'enter_the_processed_data_path' \
--checkpoint_dir 'enter_the_path_to_save' \
--batch_size 22 \
--epochs 500 \
--subject 'unseen' \
--eval_step 1000 \
--gpu 0

Descriptions of training parameters are as follows:

  • --grid: Dataset location (grid)
  • --checkpoint_dir: directory for saving checkpoints
  • --checkpoint : saved checkpoint where the training is resumed from
  • --batch_size: batch size
  • --epochs: number of epochs
  • --augmentations: whether performing augmentation
  • --dataparallel: Use DataParallel
  • --subject: different speaker settings, s# is speaker specific training, overlap for multi-speaker setting, unseen for unseen-speaker setting, four for four speaker training
  • --gpu: gpu number for training
  • --lr: learning rate
  • --eval_step: steps for performing evaluation
  • --window_size: number of frames to be used for training
  • Refer to train.py for the other training parameters

The evaluation during training is performed for a subset of the validation dataset due to the heavy time costs of waveform conversion (griffin-lim).
In order to evaluate the entire performance of the trained model run the test code (refer to "Testing the Model" section).

check the training logs

tensorboard --logdir='./runs/logs to watch' --host='ip address of the server'

The tensorboard shows the training and validation loss, evaluation metrics, generated mel-spectrogram, and audio

Testing the Model

To test the model, run following command:

# Dataparallel test example for multi-speaker setting in GRID
python test.py \
--grid 'enter_the_processed_data_path' \
--checkpoint 'enter_the_checkpoint_path' \
--batch_size 100 \
--subject 'overlap' \
--save_mel \
--save_wav \
--dataparallel \
--gpu 0,1

Descriptions of training parameters are as follows:

  • --grid: Dataset location (grid)
  • --checkpoint : saved checkpoint where the training is resumed from
  • --batch_size: batch size
  • --dataparallel: Use DataParallel
  • --subject: different speaker settings, s# is speaker specific training, overlap for multi-speaker setting, unseen for unseen-speaker setting, four for four speaker training
  • --save_mel: whether to save the 'mel_spectrogram' and 'spectrogram' in .npz format
  • --save_wav: whether to save the 'waveform' in .wav format
  • --gpu: gpu number for training
  • Refer to test.py for the other parameters

Test Automatic Speech Recognition (ASR) results of generated results: WER

Transcription (Ground-truth) of GRID dataset can be downloaded from the below link.

move to the ASR_model directory

cd ASR_model/GRID

To evaluate the WER, run following command:

# test example for multi-speaker setting in GRID
python test.py \
--data 'enter_the_generated_data_dir (mel or wav) (ex. ./../../test/spec_mel)' \
--gtpath 'enter_the_downloaded_transcription_path' \
--subject 'overlap' \
--gpu 0

Descriptions of training parameters are as follows:

  • --data: Data for evaluation (wav or mel(.npz))
  • --wav : whether the data is waveform or not
  • --batch_size: batch size
  • --subject: different speaker settings, s# is speaker specific training, overlap for multi-speaker setting, unseen for unseen-speaker setting, four for four speaker training
  • --gpu: gpu number for training
  • Refer to ./ASR_model/GRID/test.py for the other parameters

Pre-trained ASR model checkpoint

Below lists are the pre-trained ASR model to evaluate the generated speech.
WER shows the original performances of the model on ground-truth audio.

Setting WER
GRID (constrained-speaker) 0.83 %
GRID (multi-speaker) 1.67 %
GRID (unseen-speaker) 0.37 %
LRW 1.54 %

Put the checkpoints in ./ASR_model/GRID/data for GRID, and in ./ASR_model/LRW/data for LRW.

Citation

If you find this work useful in your research, please cite the paper:

@article{kim2021vcagan,
  title={Lip to Speech Synthesis with Visual Context Attentional GAN},
  author={Kim, Minsu and Hong, Joanna and Ro, Yong Man},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}
To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

Kunal Wadhwa 2 Jan 05, 2022
Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

97 Dec 17, 2022
A PoC Corporation Relationship Knowledge Graph System on top of Nebula Graph.

Corp-Rel is a PoC of Corpartion Relationship Knowledge Graph System. It's built on top of the Open Source Graph Database: Nebula Graph with a dataset

Wey Gu 20 Dec 11, 2022
Learning Off-Policy with Online Planning, CoRL 2021

LOOP: Learning Off-Policy with Online Planning Accepted in Conference of Robot Learning (CoRL) 2021. Harshit Sikchi, Wenxuan Zhou, David Held Paper In

Harshit Sikchi 24 Nov 22, 2022
Epidemiology analysis package

zEpid zEpid is an epidemiology analysis package, providing easy to use tools for epidemiologists coding in Python 3.5+. The purpose of this library is

Paul Zivich 111 Jan 08, 2023
Artificial Intelligence playing minesweeper 🤖

AI playing Minesweeper ✨ Minesweeper is a single-player puzzle video game. The objective of the game is to clear a rectangular board containing hidden

Vaibhaw 8 Oct 17, 2022
FrankMocap: A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator

FrankMocap pursues an easy-to-use single view 3D motion capture system developed by Facebook AI Research (FAIR). FrankMocap provides state-of-the-art 3D pose estimation outputs for body, hand, and bo

Facebook Research 1.9k Jan 07, 2023
Official Pytorch implementation of RePOSE (ICCV2021)

RePOSE: Iterative Rendering and Refinement for 6D Object Detection (ICCV2021) [Link] Abstract We present RePOSE, a fast iterative refinement method fo

Shun Iwase 68 Nov 15, 2022
Get a Grip! - A robotic system for remote clinical environments.

Get a Grip! Within clinical environments, sterilization is an essential procedure for disinfecting surgical and medical instruments. For our engineeri

Jay Sharma 1 Jan 05, 2022
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
Repository for the paper titled: "When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer"

When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer This repository contains code for our paper titled "When is BERT M

Princeton Natural Language Processing 9 Dec 23, 2022
PyTorch Implementation of the paper Learning to Reweight Examples for Robust Deep Learning

Learning to Reweight Examples for Robust Deep Learning Unofficial PyTorch implementation of Learning to Reweight Examples for Robust Deep Learning. Th

Daniel Stanley Tan 325 Dec 28, 2022
DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs

DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs Abstract: Image-to-image translation has recently achieved re

yaxingwang 23 Apr 14, 2022
Monify: an Expense tracker Program implemented in a Graphical User Interface that allows users to keep track of their expenses

💳 MONIFY (EXPENSE TRACKER PRO) 💳 Description Monify is an Expense tracker Program implemented in a Graphical User Interface allows users to add inco

Moyosore Weke 1 Dec 14, 2021
Breaching - Breaching privacy in federated learning scenarios for vision and text

Breaching - A Framework for Attacks against Privacy in Federated Learning This P

Jonas Geiping 139 Jan 03, 2023
pq is a jq-like Pickle file viewer

pq PQ is a jq-like viewer/processing tool for pickle files. howto # pq '' file.pkl {'other': 456, 'test': 123} # pq 'table' file.pkl |other|test| | 45

3 Mar 15, 2022
Bianace Prediction Pytorch Model

Bianace Prediction Pytorch Model Main Results ETHUSDT from 2021-01-01 00:00:00 t

RoyYang 4 Jul 20, 2022
Mscp jamf - Build compliance in jamf

mscp_jamf Build compliance in Jamf. This will build the following xml pieces to

Bob Gendler 3 Jul 25, 2022
Tensorflow 2.x implementation of Vision-Transformer model

Vision Transformer Unofficial Tensorflow 2.x implementation of the Transformer based Image Classification model proposed by the paper AN IMAGE IS WORT

Soumik Rakshit 16 Jul 20, 2022
O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis

O-CNN This repository contains the implementation of our papers related with O-CNN. The code is released under the MIT license. O-CNN: Octree-based Co

Microsoft 607 Dec 28, 2022