4D Human Body Capture from Egocentric Video via 3D Scene Grounding

Overview

4D Human Body Capture from Egocentric Video via 3D Scene Grounding

[Project] [Paper]

Installation:

Our method requires the same dependencies as SMPLify-X and OpenPose. We refer to the official implementation fo SMPLify-X and OpenPose for installation details.

Our method also needs the installation of Chamfer Pytorch to calculate the chamfer distnace for enforceing human-scene constraints

Data Preparation:

Step 1: Dump video frames with desired fps (30) with utils/dump_videos.py. Run utils/split_frames to segment videos into equally long subatom clips. Repack frames to videos with utils/pack_videos.py (This is for faster openpose I/O).

Step 2: Run openpose_call.py under openpose folder to get human body keypoints, then run utils/openpose_helper to rename keypoint.json and run utils/openpose_filter.py to keep the most confident human keypoints.

Step 3: Run Smplify-X model with specified focal length and data directory. This step may take up to several hours. For instance:

python3 smplifyx/main.py --config cfg_files/fit_smplx.yaml  --data_folder /home/miao/data/rylm/downsampled_frames/miao_mainbuilding_0-1 --output_folder /home/miao/data/rylm/downsampled_frames/miao_mainbuilding_0-1/body_gen --visualize="False" --model_folder ./models --vposer_ckpt ./vposer --part_segm_fn smplx_parts_segm.pkl --focal_length 694.0

Step 4: Run Colmap for to generate scene mesh and camera trajectory. This step make take up to several hours depneding on the complexity of the scene. Then Run utils/camerpose_helper and utils/pointscloud_helper.py to generate desired points cloud file and camera pose.

Joint Optimization with 3D Scene Context:

Run global_optimization.py to conduct temproal smoothing and enforce human-scene constraints:

python3 global_optimization.py '/home/miao/data/rylm/packed_data/miao_mainbuidling_0-1/body_gen' '/home/miao/data/rylm/packed_data/miao_mainbuidling_0-1/smoothed_body

The resulting data should be organized as following:

  • datafolder:
    • videoname:
      • images: folder that contains all video frames
      • keypoints: folder that contains all body keypoints
      • body_gen: folder that contains all body mesh files:
      • smoothed_boyd: folder that contains all jointly-optimized body mesh files:
      • camera_pose.txt: text file that contains camera pose at each temporal footprint
      • meshed-poisson.ply: scene mesh file from dense reconstruction
      • camera.txt: text file that contains camera parameters
      • xyz.ply point cloud file. (use meash lab to convert .xyz file to .ply file)

Visualization in the World Coordinate:

Run global_vis.py to transform the body mesh in pivot coordinate to world coordinate. By default the viewpoint of open3d is the initial position camera trajectory. Setting bool flag to 'True' will resulting into a open3d viewpoint moving the same way as camera viewer.

python3 global_vis.py '/home/miao/data/rylm/downsampled_frames/miao_mainbuilding_0-1/' False

Visualization in the Egocentric Coordinate:

Run vis.py to view recosntrcuted body mesh on image plane.

python3 vis.py '/home/miao/data/rylm/segmented_data/miao_mainbuilding_0-1/'

Citation

If you find our code useful in your research, please use the following BibTeX entry for citation.

@inproceedings{liu20204d,
  title={4D Human Body Capture from Egocentric Video via 3D Scene Grounding},
  author={Liu, Miao and Yang, Dexin and Zhang, Yan and Cui, Zhaopeng and Rehg, James M and Tang, Siyu},
  booktitle={3DV},
  year={2021}
}
Owner
Miao Liu
Miao Liu
Video Swin Transformer - PyTorch

Video-Swin-Transformer-Pytorch This repo is a simple usage of the official implementation "Video Swin Transformer". Introduction Video Swin Transforme

Haofan Wang 116 Dec 20, 2022
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se

Daniil Pakhomov 134 Dec 19, 2022
ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin et al., 2020).

ReConsider ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin

Facebook Research 47 Jul 26, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and Tracking of Object Poses in 3D Space"

Sparse Steerable Convolution (SS-Conv) Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and

25 Dec 21, 2022
Class-Attentive Diffusion Network for Semi-Supervised Classification [AAAI'21] (official implementation)

Class-Attentive Diffusion Network for Semi-Supervised Classification Official Implementation of AAAI 2021 paper Class-Attentive Diffusion Network for

Jongin Lim 7 Sep 20, 2022
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Google 154 Dec 16, 2022
learned_optimization: Training and evaluating learned optimizers in JAX

learned_optimization: Training and evaluating learned optimizers in JAX learned_optimization is a research codebase for training learned optimizers. I

Google 533 Dec 30, 2022
Source code for "Interactive All-Hex Meshing via Cuboid Decomposition [SIGGRAPH Asia 2021]".

Interactive All-Hex Meshing via Cuboid Decomposition Video demonstration This repository contains an interactive software to the PolyCube-based hex-me

Lingxiao Li 131 Dec 05, 2022
How will electric vehicles affect traffic congestion and energy consumption: an integrated modelling approach

EV-charging-impact This repository contains the code that has been used for the Queue modelling for the paper "How will electric vehicles affect traff

7 Nov 30, 2022
This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

4 Aug 02, 2022
(CVPR 2022) Energy-based Latent Aligner for Incremental Learning

Energy-based Latent Aligner for Incremental Learning Accepted to CVPR 2022 We illustrate an Incremental Learning model trained on a continuum of tasks

Joseph K J 37 Jan 03, 2023
DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Dimensionality Reduction + Clustering + Unsupervised Score Metrics Introduction

11 Nov 15, 2022
Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer Paper on arXiv Public PyTorch implementation of two-stage peer-reg

NNAISENSE 38 Oct 14, 2022
GazeScroller - Using Facial Movements to perform Hands-free Gesture on the system

GazeScroller Using Facial Movements to perform Hands-free Gesture on the system

2 Jan 05, 2022
Learn the Deep Learning for Computer Vision in three steps: theory from base to SotA, code in PyTorch, and space-repetition with Anki

DeepCourse: Deep Learning for Computer Vision arthurdouillard.com/deepcourse/ This is a course I'm giving to the French engineering school EPITA each

Arthur Douillard 113 Nov 29, 2022
An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters

CNN-Filter-DB An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters Paul Gavrikov, Janis Keuper Paper: htt

Paul Gavrikov 18 Dec 30, 2022
A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis

A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis This is the pytorch implementation for our MICCAI 2021 paper. A Mul

Jiarong Ye 7 Apr 04, 2022
Predicting Event Memorability from Contextual Visual Semantics

Predicting Event Memorability from Contextual Visual Semantics

0 Oct 06, 2021
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube | Slides Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to mat

677 Dec 28, 2022