Simple and ready-to-use tutorials for TensorFlow

Overview

TensorFlow World

https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat https://badges.frapsoft.com/os/v2/open-source.svg?v=102 https://coveralls.io/repos/github/astorfi/TensorFlow-World/badge.svg?branch=master https://img.shields.io/twitter/follow/amirsinatorfi.svg?label=Follow&style=social

To support maintaining and upgrading this project, please kindly consider Sponsoring the project developer.

Any level of support is a great contribution here ❤️

This repository aims to provide simple and ready-to-use tutorials for TensorFlow. The explanations are present in the wiki associated with this repository.

Each tutorial includes source code and associated documentation.

Slack Group

Table of Contents

Motivation

There are different motivations for this open source project. TensorFlow (as we write this document) is one of / the best deep learning frameworks available. The question that should be asked is why has this repository been created when there are so many other tutorials about TensorFlow available on the web?

Why use TensorFlow?

Deep Learning is in very high interest these days - there's a crucial need for rapid and optimized implementations of the algorithms and architectures. TensorFlow is designed to facilitate this goal.

The strong advantage of TensorFlow is it flexibility in designing highly modular models which can also be a disadvantage for beginners since a lot of the pieces must be considered together when creating the model.

This issue has been facilitated as well by developing high-level APIs such as Keras and Slim which abstract a lot of the pieces used in designing machine learning algorithms.

The interesting thing about TensorFlow is that it can be found anywhere these days. Lots of the researchers and developers are using it and its community is growing at the speed of light! So many issues can be dealt with easily since they're usually the same issues that a lot of other people run into considering the large number of people involved in the TensorFlow community.

What's the point of this repository?

Developing open source projects for the sake of just developing something is not the reason behind this effort. Considering the large number of tutorials that are being added to this large community, this repository has been created to break the jump-in and jump-out process that usually happens to most of the open source projects, but why and how?

First of all, what's the point of putting effort into something that most of the people won't stop by and take a look? What's the point of creating something that does not help anyone in the developers and researchers community? Why spend time for something that can easily be forgotten? But how we try to do it? Even up to this very moment there are countless tutorials on TensorFlow whether on the model design or TensorFlow workflow.

Most of them are too complicated or suffer from a lack of documentation. There are only a few available tutorials which are concise and well-structured and provide enough insight for their specific implemented models.

The goal of this project is to help the community with structured tutorials and simple and optimized code implementations to provide better insight about how to use TensorFlow quick and effectively.

It is worth noting that, the main goal of this project is to provide well-documented tutorials and less-complicated code!

TensorFlow Installation and Setup the Environment

alternate text

In order to install TensorFlow please refer to the following link:

_img/mainpage/installation.gif

The virtual environment installation is recommended in order to prevent package conflict and having the capacity to customize the working environment.

TensorFlow Tutorials

The tutorials in this repository are partitioned into relevant categories.


Warm-up

alternate text

# topic Source Code  
1 Start-up Welcome / IPython Documentation

Basics

alternate text

# topic Source Code  
2 TensorFLow Basics Basic Math Operations / IPython Documentation
3 TensorFLow Basics TensorFlow Variables / IPython Documentation

Basic Machine Learning

alternate text

# topic Source Code  
4 Linear Models Linear Regression / IPython Documentation
5 Predictive Models Logistic Regression / IPython Documentation
6 Support Vector Machines Linear SVM / IPython  
7 Support Vector Machines MultiClass Kernel SVM / IPython  

Neural Networks

alternate text

# topic Source Code  
8 Multi Layer Perceptron Simple Multi Layer Perceptron / IPython  
9 Convolutional Neural Network Simple Convolutional Neural Networks Documentation
10 Autoencoder Undercomplete Autoencoder Documentation
11 Recurrent Neural Network RNN / IPython  

Some Useful Tutorials

Contributing

When contributing to this repository, please first discuss the change you wish to make via issue, email, or any other method with the owners of this repository before making a change. For typos, please do not create a pull request. Instead, declare them in issues or email the repository owner.

Please note we have a code of conduct, please follow it in all your interactions with the project.

Pull Request Process

Please consider the following criterions in order to help us in a better way:

  • The pull request is mainly expected to be a code script suggestion or improvement.
  • A pull request related to non-code-script sections is expected to make a significant difference in the documentation. Otherwise, it is expected to be announced in the issues section.
  • Ensure any install or build dependencies are removed before the end of the layer when doing a build and creating a pull request.
  • Add comments with details of changes to the interface, this includes new environment variables, exposed ports, useful file locations and container parameters.
  • You may merge the Pull Request in once you have the sign-off of at least one other developer, or if you do not have permission to do that, you may request the owner to merge it for you if you believe all checks are passed.

Final Note

We are looking forward to your kind feedback. Please help us to improve this open source project and make our work better. For contribution, please create a pull request and we will investigate it promptly. Once again, we appreciate your kind feedback and elaborate code inspections.

Acknowledgement

I have taken huge efforts in this project for hopefully being a small part of TensorFlow world. However, it would not have been plausible without the kind support and help of my friend and colleague Domenick Poster for his valuable advices. He helped me for having a better understanding of TensorFlow and my special appreciation goes to him.

Comments
  • TensorFlow

    TensorFlow

    $ git clone https://github.com/TensorFlow-World.git Cloning into 'TensorFlow-World'... remote: Not Found fatal: repository 'https://github.com/TensorFlow-World.git/' not found

    opened by ashu-22 13
  • RE: Policy regarding typos in codebase.

    RE: Policy regarding typos in codebase.

    This issue is regarding your policy regarding typos in your codebase. Here is the relevant section in your CONTRIBUTING.rst: For typos, please do not create a pull request. Instead, declare them in issues or email the repository owner.

    I suggest this policy be revised as it creates an extra step for you, the maintainer of this repo. For example, here is your current process:

    1. Contributor finds a typo.
    2. Contributor opens an issue.
    3. Repo owner reads the issue.
    4. Repo owner decides to create a code change to fix the typo and pushes the change.

    Here is the suggested process:

    1. Contributor finds a typo.
    2. Contributor creates a code change to fix the typo and creates a pull request
    3. Repo owner decides to accept the pull request and merges the changes.

    If typos can be discussed within a pull request, I don't see the point for a contributor to create an issue and then the repo owner creates a code change to fix the typo. I suggest using Github Issues to discuss lengthy proposals, but typos should be handled directly within a pull request. For example, see this Contributing guide for Github's open source guide.

    opened by adyavanapalli 4
  • Look for Python syntax errors or undefined names

    Look for Python syntax errors or undefined names

    • http://flake8.pycqa.org with find syntax errors and undefined names that can halt your program.
      • --select=E901,E999,F821,F822,F823 focuses the tool on the most critical issues
    • Fxxx codes are here: http://flake8.pycqa.org/en/latest/user/error-codes.html
    • Other codes are here: https://pycodestyle.readthedocs.io/en/latest/intro.html#error-codes
    • The output is here: https://travis-ci.org/astorfi/TensorFlow-World/builds/272817787

    F821 is really helpful for finding Python 2 / 3 differences but also for typos, copy/paste errors, etc.

    opened by cclauss 4
  • Update README.rst

    Update README.rst

    So, I cleaned up the grammar / spelling and got to the section about contributing to this repository.

    Based on this - it's definitely going to the top.

    Also. No. Here's your pull request.

    opened by razodactyl 3
  • logits is an undefined name in this context, should it be logits_last?

    logits is an undefined name in this context, should it be logits_last?

    Undefined names can raise NameErrorat runtime.

    https://travis-ci.org/astorfi/TensorFlow-World/jobs/272817788#L623-L626

    https://github.com/astorfi/TensorFlow-World/blob/master/codes/3-neural_networks/multi-layer-perceptron/code/test_classifier.py#L113

    opened by cclauss 2
  • train_op in linear regression

    train_op in linear regression

    Is defining train_op for each data point and epoch anew really needed? I'm new to TensorFlow so I can't tell why or why not this would make sense. For me, the regression seems to work fine (and much faster) if the line is removed.

    opened by mzur 2
  • sudo apt-get install nvidia-current-updates nvidia-settings-updates error

    sudo apt-get install nvidia-current-updates nvidia-settings-updates error

    Hello, just wanted to say this is a great guide. but when i execute : sudo apt-get install nvidia-current-updates nvidia-settings-updates its says: E: Unable to locate package nvidia-settings-updates

    can someone help me with this?

    opened by ghost 1
  • linear regression tutorial cost only reported for last data point

    linear regression tutorial cost only reported for last data point

    I noticed in the notebook for the linear regression that the cost was only being calculated for the last piece of data in each epoch.

    with tf.Session() as sess:
    
        # Initialize the variables[w and b].
        sess.run(tf.global_variables_initializer())
    
        # Get the input tensors
        X, Y = inputs()
    
        # Return the train loss and create the train_op.
        train_loss = loss(X, Y)
        train_op = train(train_loss)
    
        # Step 8: train the model
        for epoch_num in range(num_epochs): # run 100 epochs
            for x, y in data:
              train_op = train(train_loss)
    
              # Session runs train_op to minimize loss
              loss_value,_ = sess.run([train_loss,train_op], feed_dict={X: x, Y: y})
    
            # Displaying the loss per epoch.
            print('epoch %d, loss=%f' %(epoch_num+1, loss_value))
    
            # save the values of weight and bias
            wcoeff, bias = sess.run([W, b])
    

    data is being iterated over and the loss_value that is calculated is written over each time through the loop. Thus, the loss is only for the last piece of data. Since the loss needs to be computed over all of the data being used to train, the cost function should probably be something more like the following:

    def loss(X, Y):
        '''
        compute the loss by comparing the predicted value to the actual label.
        :param X: The inputs.
        :param Y: The labels.
        :return: The loss over the samples.
        '''
    
        # Making the prediction.
        Y_predicted = inference(X)
        return tf.reduce_sum(tf.squared_difference(Y, Y_predicted))/(2*data.shape[0])
    

    With this change above, the training section could be changed to the following (with the looping over data removed completely):

    with tf.Session() as sess:
    
        # Initialize the variables[w and b].
        sess.run(tf.global_variables_initializer())
    
        # Get the input tensors
        X, Y = inputs()
    
        # Return the train loss and create the train_op.
        train_loss = loss(X, Y)
        train_op = train(loss(X, Y))
    
        # Step 8: train the model
        for epoch_num in range(num_epochs): # run 100 epochs
            loss_value, _ = sess.run([train_loss,train_op], feed_dict={X: data[:,0], Y: data[:,1]})
    
            # Displaying the loss per epoch.
            print('epoch %d, loss=%f' %(epoch_num+1, loss_value))
    
            # save the values of weight and bias
            wcoeff, bias = sess.run([W, b])
    

    This would result in output like the following:

    epoch 1, loss=1573.599976
    epoch 2, loss=1332.513916
    epoch 3, loss=1128.868408
    epoch 4, loss=956.848999
    epoch 5, loss=811.544067
    

    I would be glad to submit a pull request with these and other minor changes. Please let me know if I have some misunderstanding.

    opened by mulhod 1
  • No Transformer Notebook

    No Transformer Notebook

    Hey,

    I see that there are no tutorial notebooks for Transformer implementations in this repository yet. Transformers are used primarily in the field of natural language processing. Like recurrent neural networks, Transformers are designed to handle sequential data, such as natural language, for tasks such as translation and text summarization.

    I would like to add such tutorial notebooks.

    opened by SauravMaheshkar 0
  • docs: fix simple typo, visualiaing -> visualising

    docs: fix simple typo, visualiaing -> visualising

    There is a small typo in docs/tutorials/1-basics/basic_math_operations/README.rst.

    Should read visualising rather than visualiaing.

    Semi-automated pull request generated by https://github.com/timgates42/meticulous/blob/master/docs/NOTE.md

    opened by timgates42 0
  • a small mistake in doc

    a small mistake in doc

    In the tutorial doc of chapter 1 "Basics/variables", there might be a misktake here:

    # "variable_list_custom" is the list of variables that we want to initialize.
    variable_list_custom = [weights, custom_variable]
    
    # The initializer
    init_custom_op = tf.variables_initializer(var_list=all_variables_list)
    

    The last line of the code above might end up with var_list=variable_list_custom, not all_variables_list.

    Here's url of the doc: https://github.com/astorfi/TensorFlow-World/tree/master/docs/tutorials/1-basics/variables#initializing-specific-variables Thank you for your repo, it helps me a lot.

    opened by Xiaokeai18 0
Releases(v1.0)
Owner
Amirsina Torfi
PhD & Developer working on Deep Learning, Computer Vision & NLP
Amirsina Torfi
We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will make a program to Crack Any Password Using Python. Show some ❤️ by starring this repository!

Crack Any Password Using Python We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will

Ananya Chatterjee 11 Dec 03, 2022
Heart Arrhythmia Classification

This program takes and input of an ECG in European Data Format (EDF) and outputs the classification for heartbeats into normal vs different types of arrhythmia . It uses a deep learning model for cla

4 Nov 02, 2022
YolactEdge: Real-time Instance Segmentation on the Edge

YolactEdge, the first competitive instance segmentation approach that runs on small edge devices at real-time speeds. Specifically, YolactEdge runs at up to 30.8 FPS on a Jetson AGX Xavier (and 172.7

Haotian Liu 1.1k Jan 06, 2023
Code for paper "Learning to Reweight Examples for Robust Deep Learning"

learning-to-reweight-examples Code for paper Learning to Reweight Examples for Robust Deep Learning. [arxiv] Environment We tested the code on tensorf

Uber Research 261 Jan 01, 2023
Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Şebnem 6 Jan 18, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
NEO: Non Equilibrium Sampling on the orbit of a deterministic transform

NEO: Non Equilibrium Sampling on the orbit of a deterministic transform Description of the code This repo describes the NEO estimator described in the

0 Dec 01, 2021
PyTorch-Multi-Style-Transfer - Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 906 Jan 04, 2023
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

[CVPRW 2021] - Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation

Anirudh S Chakravarthy 6 May 03, 2022
BanditPAM: Almost Linear-Time k-Medoids Clustering

BanditPAM: Almost Linear-Time k-Medoids Clustering This repo contains a high-performance implementation of BanditPAM from BanditPAM: Almost Linear-Tim

254 Dec 12, 2022
The project page of paper: Architecture disentanglement for deep neural networks [ICCV 2021, oral]

This is the project page for the paper: Architecture Disentanglement for Deep Neural Networks, Jie Hu, Liujuan Cao, Tong Tong, Ye Qixiang, ShengChuan

Jie Hu 15 Aug 30, 2022
Codes for NAACL 2021 Paper "Unsupervised Multi-hop Question Answering by Question Generation"

Unsupervised-Multi-hop-QA This repository contains code and models for the paper: Unsupervised Multi-hop Question Answering by Question Generation (NA

Liangming Pan 70 Nov 27, 2022
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".

Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer

Vaidotas Šimkus 1 Apr 08, 2022
Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166

Region Proportion Regularized Inference (RePRI) for Few-Shot Segmentation In this repo, we provide the code for our paper : "Few-Shot Segmentation Wit

Malik Boudiaf 138 Dec 12, 2022
A Free and Open Source Python Library for Multiobjective Optimization

Platypus What is Platypus? Platypus is a framework for evolutionary computing in Python with a focus on multiobjective evolutionary algorithms (MOEAs)

Project Platypus 424 Dec 18, 2022
Video Matting Refinement For Python

Video-matting refinement Library (use pip to install) scikit-image numpy av matplotlib Run Static background python path_to_video.mp4 Moving backgroun

3 Jan 11, 2022
“Data Augmentation for Cross-Domain Named Entity Recognition” (EMNLP 2021)

Data Augmentation for Cross-Domain Named Entity Recognition Authors: Shuguang Chen, Gustavo Aguilar, Leonardo Neves and Thamar Solorio This repository

<a href=[email protected]"> 18 Sep 10, 2022
The official codes for the ICCV2021 Oral presentation "Rethinking Counting and Localization in Crowds: A Purely Point-Based Framework"

P2PNet (ICCV2021 Oral Presentation) This repository contains codes for the official implementation in PyTorch of P2PNet as described in Rethinking Cou

Tencent YouTu Research 208 Dec 26, 2022
Python library for analysis of time series data including dimensionality reduction, clustering, and Markov model estimation

deeptime Releases: Installation via conda recommended. conda install -c conda-forge deeptime pip install deeptime Documentation: deeptime-ml.github.io

495 Dec 28, 2022
A PyTorch Image-Classification With AlexNet And ResNet50.

PyTorch 图像分类 依赖库的下载与安装 在终端中执行 pip install -r -requirements.txt 完成项目依赖库的安装 使用方式 数据集的准备 STL10 数据集 下载:STL-10 Dataset 存储位置:将下载后的数据集中 train_X.bin,train_y.b

FYH 4 Feb 22, 2022