Running Google MoveNet Multipose Tracking models on OpenVINO.

Overview

MoveNet Multipose Tracking on OpenVINO

Running Google MoveNet Multipose models on OpenVINO.

A convolutional neural network model that runs on RGB images and predicts human joint locations of several persons (6 max).

WIP: currently only working on CPU (not on GPU nor MYRIAD)

Demo

Full video demo here.

For MoveNet Single Pose, please visit : openvino_movenet

Install

You need OpenVINO (tested on 2021.4) and OpenCV installed on your computer and to clone/download this repository.

Run

Usage:

> python3 MovenetMPOpenvino.py -h
usage: MovenetMPOpenvino.py [-h] [-i INPUT] [--xml XML]
                            [-r {192x192,192x256,256x256,256x320,320x320,480x640,736x1280}]
                            [-t {iou,oks}] [-s SCORE_THRESHOLD] [-o OUTPUT]

optional arguments:
  -h, --help            show this help message and exit
  -i INPUT, --input INPUT
                        Path to video or image file to use as input
                        (default=0)
  --xml XML             Path to an .xml file for model
  -r {192x192,192x256,256x256,256x320,320x320,480x640,736x1280}, --res {192x192,192x256,256x256,256x320,320x320,480x640,736x1280}
  -t {iou,oks}, --tracking {iou,oks}
                        Enable tracking and specify method
  -s SCORE_THRESHOLD, --score_threshold SCORE_THRESHOLD
                        Confidence score (default=0.200000)
  -o OUTPUT, --output OUTPUT
                        Path to output video file

Examples :

  • To use default webcam camera as input :

    python3 MovenetMPOpenvino.py

  • To specify the model input resolution :

    python3 MovenetMPOpenvino.py -r 256x320

  • To enable tracking, based on Object Keypoint Similarity :

    python3 MovenetMPOpenvino.py -t keypoint

  • To use a file (video or image) as input :

    python3 MovenetMPOpenvino.py -i filename

Keypress Function
Esc Exit
space Pause
b Show/hide bounding boxes
f Show/hide FPS

Input resolution

The model input resolution (set with the '-r' or '--res' option) has an impact on the inference speed (the higher the resolution, the slower the inference) and on the size of the people that can be detected (the higher the resoltion, the smaller the size). The test below has been run on a CPU i7700k.

Resolution FPS Result
192x256 58.0 192x256
256x320 44.1 256x320
480x640 14.8 480x640
736x1280 4.5 736x1280

Tracking

The Javascript MoveNet demo code from Google proposes as an option two methods of tracking. For this repository, I have adapted this tracking code in python. You can enable the tracking with the --tracking (or -t) argument of the demo followed by iou or oks which specifies how to calculate the similarity between detections from consecutive frames :

Tracking Result
IoU Tracking IoU Tracking
OKS Tracking OKS Tracking

In the example above, we can notice several track switching in the IoU output and a track replacement (2 by 6). OKS method is doing a better job, yet it is not perfect: there is a track switching when body 3 is passing in front of body 1.

The models

The MoveNet Multipose v1 source model comes from the Tensorfow Hub: https://tfhub.dev/google/movenet/multipose/lightning/1

The model was converted by PINTO in OpenVINO IR format. Unfortunately, the OpenVINO IR MoveNet model input resolution cannot be changed dynamically, so an arbitrary list of models have been generated, each one with its dedicated input resolution. These models and others (other resolutions or precisions) are also available there: https://github.com/PINTO0309/PINTO_model_zoo/tree/main/137_MoveNet_MultiPose

Credits

[ICCV 2021] HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration

HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration Introduction The repository contains the source code and pre-tr

Intelligent Sensing, Perception and Computing Group 55 Dec 14, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning

FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning (FedML) developed and maintained by Scaleout Systems. FEDn enables highly scalable cross-silo and cr

Scaleout 75 Nov 09, 2022
Train an imgs.ai model on your own dataset

imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings.

Fabian Offert 5 Dec 21, 2021
The MLOps platform for innovators 🚀

​ DS2.ai is an integrated AI operation solution that supports all stages from custom AI development to deployment. It is an AI-specialized platform service that collects data, builds a training datas

9 Jan 03, 2023
Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations

Transfer-Learning-in-Reinforcement-Learning Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations Final Report Tra

Trung Hieu Tran 4 Oct 17, 2022
Command-line tool for downloading and extending the RedCaps dataset.

RedCaps Downloader This repository provides the official command-line tool for downloading and extending the RedCaps dataset. Users can seamlessly dow

RedCaps dataset 33 Dec 14, 2022
Differentiable Annealed Importance Sampling (DAIS)

Differentiable Annealed Importance Sampling (DAIS) This repository contains the code to reproduce the DAIS results from the paper Differentiable Annea

Guodong Zhang 6 Dec 26, 2021
Official repository for Jia, Raghunathan, Göksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Certified Robustness to Adversarial Word Substitutions This is the official GitHub repository for the following paper: Certified Robustness to Adversa

Robin Jia 38 Oct 16, 2022
Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration

This repo is for the paper: Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration The DAC environment is based on the Dynam

Carola Doerr 1 Aug 19, 2022
Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

ming71 56 Nov 28, 2022
Normalizing Flows with a resampled base distribution

Resampling Base Distributions of Normalizing Flows Normalizing flows are a popular class of models for approximating probability distributions. Howeve

Vincent Stimper 24 Nov 03, 2022
ELSED: Enhanced Line SEgment Drawing

ELSED: Enhanced Line SEgment Drawing This repository contains the source code of ELSED: Enhanced Line SEgment Drawing the fastest line segment detecto

Iago Suárez 125 Dec 31, 2022
Benchmarks for Model-Based Optimization

Design-Bench Design-Bench is a benchmarking framework for solving automatic design problems that involve choosing an input that maximizes a black-box

Brandon Trabucco 43 Dec 20, 2022
Implementation for Simple Spectral Graph Convolution in ICLR 2021

Simple Spectral Graph Convolutional Overview This repo contains an example implementation of the Simple Spectral Graph Convolutional (S^2GC) model. Th

allenhaozhu 64 Dec 31, 2022
Codes of paper "Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling"

Unseen Object Amodal Instance Segmentation (UOAIS) Seunghyeok Back, Joosoon Lee, Taewon Kim, Sangjun Noh, Raeyoung Kang, Seongho Bak, Kyoobin Lee This

GIST-AILAB 92 Dec 13, 2022
Video lie detector using xgboost - A video lie detector using OpenFace and xgboost

video_lie_detector_using_xgboost a video lie detector using OpenFace and xgboost

2 Jan 11, 2022
Dynamica causal Bayesian optimisation

Dynamic Causal Bayesian Optimization This is a Python implementation of Dynamic Causal Bayesian Optimization as presented at NeurIPS 2021. Abstract Th

nd308 18 Nov 22, 2022
HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty Giorgio Cantarini, Francesca Odone, Nicoletta Noceti, Federi

18 Aug 02, 2022
This is the code repository for the paper "Identification of the Generalized Condorcet Winner in Multi-dueling Bandits" (NeurIPS 2021).

Code Repository for the Paper "Identification of the Generalized Condorcet Winner in Multi-dueling Bandits" (To appear in: Proceedings of NeurIPS20

1 Oct 03, 2022