HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

Related tags

Deep LearningHHP-Net
Overview

HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

Giorgio Cantarini, Francesca Odone, Nicoletta Noceti, Federico Tomenotti - WACV 2022

Abstract: In this paper we introduce a novel method to estimate the head pose of people in single images starting from a small set of head keypoints. To this purpose, we propose a regression model that exploits keypoints and outputs the head pose represented by yaw, pitch, and roll. Our model is simple to implement and more efficient with respect to the state of the art -- faster in inference and smaller in terms of memory occupancy -- with comparable accuracy. Our method also provides a measure of the heteroscedastic uncertainties associated with the three angles, through an appropriately designed loss function. As an example application, we address social interaction analysis in images: we propose an algorithm for a quantitative estimation of the level of interaction between people, starting from their head poses and reasoning on their mutual positions. ArXiv

Any questions or discussions are welcomed!

Installation

To download the repository:

git clone https://github.com/cantarinigiorgio/HHP-Net

To install the requirements:

pip install -r requirements.txt

Network architecture

Demo

There are different choices for the key points detector: in this repository we propose two variants

  • a normal version, very precise but less efficient
  • a faster version less accurate but faster

Normal version

We test three different backbones of CenterNet (HourGlass104, Resnet50V2 and Resnet50V1 available in the TensorFlow 2 Detection Model Zoo); each model takes as input 512x512 images.

Download one of the previous model (e.g. HourGlass104) then extract it to HHP-Net/centernet/ with:

tar -zxvf centernet_hg104_512x512_kpts_coco17_tpu-32.tar.gz -C /HHP-Net/centernet

To make inference on a single image, run:

python inference_on_image.py [--detection-model PATH_DETECTION_MODEL] [--hhp-model PATH_HHPNET] [--image PATH_IMAGE]  

To make inference on frames from the webcam, run:

python inference_on_webcam.py [--detection-model PATH_DETECTION_MODEL] [--hhp-model PATH_HHPNET] 

Faster version

To estimate the keypoints firstly we use an object detection model for detecting people; then we exploit a model to estimate the pose of each people detected by the previous model in the image.

In order to detect people we test Centernet MobilenetV2: download it and then extract it to HHP-Net/centernet/:

tar -zxvf centernet_mobilenetv2fpn_512x512_coco17_od.tar.gz -C /HHP-Net/centernet

Then download Posenet for pose estimation and move to HHP-Net/posenet/

mv posenet_mobilenet_v1_100_257x257_multi_kpt_stripped.tflite HHP-Net/posenet/

To make inference on a single image, run:

python fast_inference_on_image.py [--detection-model PATH_MODEL_DETECTION] [--pose-model PATH_MODEL_POSE] [--hhp-model PATH_HHPNET] [--image PATH_IMAGE] 

To make inference on frames from the webcam, run:

python fast_inference_on_webcam.py [--detection-model PATH_MODEL_DETECTION] [--pose-model PATH_MODEL_POSE] [--hhp-model PATH_HHPNET] 

Citation

If you find this code useful for your research, please use the following BibTeX entry.

@misc{cantarini2021hhpnet,
      title={HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty}, 
      author={Giorgio Cantarini and Federico Figari Tomenotti and Nicoletta Noceti and Francesca Odone},
      year={2021},
      eprint={2111.01440},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Code Author

  • Giorgio Cantarini - Imavis s.r.l. and Malga (Machine Learning Genoa Center)
Owner
Computer Vision Engineer at Imavis s.r.l.
Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem

Benchmarking nearest neighbors Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem, but so far t

Erik Bernhardsson 3.2k Jan 03, 2023
SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging.

SweiNet SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging. SweiNet takes as in

Felix Jin 3 Mar 31, 2022
GANSketchingJittor - Implementation of Sketch Your Own GAN in Jittor

GANSketching in Jittor Implementation of (Sketch Your Own GAN) in Jittor(计图). Or

Bernard Tan 10 Jul 02, 2022
PyTorch Implementation of SSTNs for hyperspectral image classifications from the IEEE T-GRS paper "Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A FAS Framework."

PyTorch Implementation of SSTN for Hyperspectral Image Classification Paper links: SSTN published on IEEE T-GRS. Also, you can directly find the imple

Zilong Zhong 54 Dec 19, 2022
This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

BUPT GAMMA Lab 519 Jan 02, 2023
Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images

Lung Segmentation (2D) Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images. Demo See the application of the

163 Sep 21, 2022
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
Official code for 'Robust Siamese Object Tracking for Unmanned Aerial Manipulator' and offical introduction to UAMT100 benchmark

SiamSA: Robust Siamese Object Tracking for Unmanned Aerial Manipulator Demo video 📹 Our video on Youtube and bilibili demonstrates the evaluation of

Intelligent Vision for Robotics in Complex Environment 12 Dec 18, 2022
A Python package to process & model ChEMBL data.

insilico: A Python package to process & model ChEMBL data. ChEMBL is a manually curated chemical database of bioactive molecules with drug-like proper

Steven Newton 0 Dec 09, 2021
Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning

Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning Update (September 18th, 2021) A supporting document de

Taimur Hassan 1 Mar 16, 2022
Anti-UAV base on PaddleDetection

Paddle-Anti-UAV Anti-UAV base on PaddleDetection Background UAVs are very popular and we can see them in many public spaces, such as parks and playgro

Qingzhong Wang 2 Apr 20, 2022
Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC.

Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC. Para los Laboratorios de la materia, vamos a utilizar el len

Luis Biedma 18 Dec 12, 2022
PointCNN: Convolution On X-Transformed Points (NeurIPS 2018)

PointCNN: Convolution On X-Transformed Points Created by Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Introduction PointCNN

Yangyan Li 1.3k Dec 21, 2022
A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines

A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines Understanding the results of deep neural networks is

Johan van den Heuvel 2 Dec 13, 2021
Multimodal Descriptions of Social Concepts: Automatic Modeling and Detection of (Highly Abstract) Social Concepts evoked by Art Images

MUSCO - Multimodal Descriptions of Social Concepts Automatic Modeling of (Highly Abstract) Social Concepts evoked by Art Images This project aims to i

0 Aug 22, 2021
Implementation of Heterogeneous Graph Attention Network

HetGAN Implementation of Heterogeneous Graph Attention Network This is the code repository of paper "Prediction of Metro Ridership During the COVID-19

5 Dec 28, 2021
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)

Why Spectral Normalization Stabilizes GANs: Analysis and Improvements [paper (NeurIPS 2021)] [paper (arXiv)] [code] Authors: Zinan Lin, Vyas Sekar, Gi

Zinan Lin 32 Dec 16, 2022
COCO Style Dataset Generator GUI

A simple GUI-based COCO-style JSON Polygon masks' annotation tool to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes. Optionally, one could choose to us

Hans Krupakar 142 Dec 09, 2022
2021 National Underwater Robotics Vision Optics

2021-National-Underwater-Robotics-Vision-Optics 2021年全国水下机器人算法大赛-光学赛道-B榜精度第18名 (Kilian_Di的团队:A榜[email pro

Di Chang 9 Nov 04, 2022
Python module providing a framework to trace individual edges in an image using Gaussian process regression.

Edge Tracing using Gaussian Process Regression Repository storing python module which implements a framework to trace individual edges in an image usi

Jamie Burke 7 Dec 27, 2022