StocksMA is a package to facilitate access to financial and economic data of Moroccan stocks.

Overview

StocksMA

Creating easier access to the Moroccan stock market data

Language PyPI Star Badge GitHub license Check Code

What is StocksMA ?

StocksMA is a package to facilitate access to financial and economic data of Moroccan stocks. It tries to cover potentially valuable and interesting data points.

The package include functions to extract price data from Leboursier, financial ratios(income statement, balance sheet, cash flow) from MarketWatch, and profile data from WSJ

Note: Sometimes, some functions may fail to get the data from some sources due to WAF protection.

Installation

Python3 is required.

$ pip install StocksMA

Usage

Import the package

>> import StocksMA as stm

Get all availabale tickers

Show available tickers with the full name of the company Example:

stm.get_tickers()
ADH / Douja Promotion Groupe Addoha
ADI / Alliances Developpement Immobilier S.A.
AFI / Afric Industries S.A.
AFM / AFMA S.A.
.
.
.
WAA / Wafa Assurance S.A.
ZDJ / Zellidja S.A.

Get price data

Get historical OHLCV data for a given symbol(s)

Args:

  • tickers Union[str, List[str]] : List or str of companies names or ticker symbols(e.g. ['maroc telecom', 'MNG'] or 'CIH')
  • start_date str: (YYYY-MM-DD) Starting date to pull data from, limited to a maximum of six year
  • end_date str: (YYYY-MM-DD) Ending date. Defaults to the current local date

Returns:

  • pd.DataFrame: Dataframe of historical OHLCV data

Example:

# Get price data of multiple companies
stm.get_price_data(['CIH','maroc telecom', 'involys'], start_date='2020-11-14', end_date='2022-02-14')
Close High Low Open Volume
Company Date
CIH P 2020-11-16 248.15 248.15 248.00 248.00 8
2020-11-17 250.00 250.00 248.00 248.10 220
2020-11-19 245.20 248.00 245.10 248.00 133
... ... ... ... ... ...
INVOLYS P 2022-02-08 131.95 131.95 131.95 131.95 5
2022-02-09 131.95 131.95 131.90 131.95 100
2022-02-11 131.90 131.90 131.00 131.00 4

[840 rows x 5 columns]

# Get price data of single company
stm.get_price_data('involys', start_date='2020-11-14', end_date='2022-02-14')
Open High Low Close Volume
Company Date
INVOLYS P 2020-11-16 119.50 121.00 119.50 121.00 11
2020-11-17 118.60 121.00 118.60 121.00 22
2020-11-19 121.00 121.00 121.00 121.00 1
... ... ... ... ... ...
2022-02-09 131.95 131.95 131.90 131.95 100
2022-02-11 131.00 131.90 131.00 131.90 4

[253 rows x 5 columns]


Get session information

Get data related to the current trading session of a given symbol

Args:

  • company str: Company name or ticker symbol(e.g. 'maroc telecom', 'MNG')

Returns:

  • pd.DataFrame: Dataframe of session data

Example:

stm.get_session_info('involys')
Name Name_2 ISIN Number of Shares Close Previous Close Market Cap Quotation Datetime Change Volume Change Volume in Shares Volume Open Low High
1 INVOLYS P INVOLYS MA0000011579 382716 109.950 109.95 42079624.20 18/03/2022 à 15:16 0.00 0.00 5387 49 109.400 109.400 109.950

Get intraday price data

Get intraday price data of a given symbol

Args:

  • company str: Company name or ticker symbol(e.g. 'maroc telecom', 'MNG')

Returns:

  • pd.DataFrame: Dataframe of intraday price data

Example:

stm.get_data_intraday('CIH')
prices
Datetime
2022-03-18 09:30:00 130.20
2022-03-18 10:02:00 131.00
2022-03-18 10:06:00 131.00
2022-03-18 10:07:00 131.00
2022-03-18 10:17:00 131.15
2022-03-18 10:24:00 131.15
2022-03-18 10:30:00 131.15
2022-03-18 10:41:00 131.40
2022-03-18 11:07:00 131.40
2022-03-18 11:15:00 131.40
2022-03-18 12:24:00 131.45
2022-03-18 12:31:00 131.40
2022-03-18 13:25:00 131.20
2022-03-18 14:48:00 131.25
2022-03-18 15:07:00 131.40
2022-03-18 15:19:00 131.25
2022-03-18 15:30:00 131.40

Get Ask Bid data

Get ask bid data of a given symbol

Args:

  • company str: Company name or ticker symbol(e.g. 'maroc telecom', 'MNG')

Returns:

  • pd.DataFrame: Dataframe of ask bid data

Example:

stm.get_ask_bid('CIH')
bidValue bidQte askValue askQte bidOrder askOrder
0 340.1 3 350.0 248 1 2
1 340.0 950 352.0 702 2 1
2 337.1 4 354.5 10 1 1
3 336.2 10 354.9 3 1 1
4 335.0 10 355.0 290 1 2
5 334.0 4 356.0 200 1 2
6 332.0 6 357.9 2 2 1
7 330.5 10 358.0 482 1 2
8 330.0 274 359.0 59 3 1
9 321.5 300 359.4 20 1 1

Get balance sheet

Get balance sheet data of a given symbol

Args:

  • company str: Ticker symbol(e.g. 'IAM', 'MNG')
  • frequency str: Display either quarter or annual data. Defaults to "annual".

Returns:

  • pd.DataFrame: Dataframe of balance sheet data

Example:

# Annual balance sheet
stm.get_balance_sheet('ATW', frequency='annual')
2017 2018 2019 2020 2021
Item
Assets Total Cash & Due from Banks 18.22B 18.54B 24.73B 26.33B 25.74B
Cash & Due from Banks Growth - 1.71% 33.42% 6.48% -2.26%
Investments - Total 116.38B 119.86B 123.75B 137.55B 158.73B
Investments Growth - 2.99% 3.25% 11.15% 15.40%
Trading Account Securities - - 54.32B 58.67B 69.91B
... ... ... ... ... ...
Liabilities & Shareholders' Equity Total Shareholders' Equity / Assets 8.40% 8.73% 8.94% 8.41% 8.80%
Return On Average Total Equity - - - - 10.26%
Accumulated Minority Interest 6.44B 5.95B 6.3B 6.49B 7.34B
Total Equity 46.06B 50.47B 53.93B 54.29B 59.79B
Liabilities & Shareholders' Equity 471.47B 509.93B 532.6B 568.11B 596.33B

[74 rows x 5 columns]

# Quarter balance sheet
stm.get_balance_sheet('ATW', frequency='quarter')
30-Jun-2021 30-Sep-2021 31-Dec-2020 31-Dec-2021 31-Mar-2021
Item
Assets Total Cash & Due from Banks 23.41B 20.2B 26.33B 25.74B 22.79B
Cash & Due from Banks Growth 2.74% -13.73% - 27.43% -13.47%
Investments - Total 148.98B 155.57B 137.55B 158.73B 141.76B
Investments Growth 5.10% 4.42% - 2.04% 3.06%
Trading Account Securities 63.98B 64.94B 58.67B 69.91B 61.8B
... ... ... ... ... ...
Liabilities & Shareholders' Equity Total Shareholders' Equity / Assets 8.47% 8.73% 8.41% 8.80% 8.48%
Return On Average Total Equity - - - 10.26% -
Accumulated Minority Interest 6.88B 7.13B 6.49B 7.34B 6.69B
Total Equity 56B 58.29B 54.29B 59.79B 54.45B
Liabilities & Shareholders' Equity 579.79B 586.09B 568.11B 596.33B 562.95B

[74 rows x 5 columns]


Get income statement

Get income statement data of a given symbol

Args:

  • company str: Ticker symbol(e.g. 'IAM', 'MNG')
  • frequency str: Display either quarter or annual data. Defaults to "annual".

Returns:

  • pd.DataFrame: Dataframe of income statement data

Example:

# Annual income statement
stm.get_income_statement('IAM', frequency='annual')
Item 2017 2018 2019 2020 2021
Sales/Revenue 34.96B 36.03B 36.52B 36.77B 35.79B
Sales Growth - 3.06% 1.35% 0.69% -2.66%
Cost of Goods Sold (COGS) incl. D&A 15.69B 15.72B 16.19B 15.93B 15.05B
COGS Growth - 0.24% 2.95% -1.57% -5.56%
COGS excluding D&A 9.08B 8.9B 8.77B 8.42B 7.99B
Non Operating Income/Expense (57M) 201M (49M) (1.49B) (165M)
... ... ... ... ... ...
Equity in Affiliates (Pretax) - - - - -
Interest Expense 586M 642M 756M 888M 826M
Interest Expense Growth - 9.56% 17.76% 17.46% -6.98%
EBITDA 17.03B 17.87B 15.65B 19.53B 18.63B
EBITDA Growth - 4.93% -12.44% 24.80% -4.62%
EBITDA Margin - - - - 52.05%
# Quarter income statement
stm.get_income_statement('IAM', frequency='quarter')
Item 31-Dec-2019 30-Jun-2020 31-Dec-2020 30-Jun-2021 31-Dec-2021
Sales/Revenue 18.67B 18.32B 18.45B 17.78B 18.01B
Sales Growth - -1.87% 0.67% -3.61% 1.29%
Cost of Goods Sold (COGS) incl. D&A 11.53B 4.92B 7.74B 7.9B 7.57B
COGS Growth - -57.33% 57.23% 2.02% -4.08%
COGS excluding D&A 4.42B 4.16B 4.26B 4.09B 3.91B
Depreciation & Amortization Expense 7.12B 759M 3.48B 3.81B 3.67B
... ... ... ... ... ...
EBITDA 9.49B 6.6B 9.66B 9.37B 9.68B
EBITDA Growth - -30.48% 46.52% -3.07% 3.38%
EBITDA Margin - - - - 53.76%

Get cash flow

Get cash flow data of a given symbol

Args:

  • company str: Ticker symbol(e.g. 'IAM', 'MNG')
  • frequency str: Display either quarter or annual data. Defaults to "annual".

Returns:

  • pd.DataFrame: Dataframe of cash flow data

Example:

# Annual cash flow
stm.get_cash_flow('IAM', frequency='annual')
2017 2018 2019 2020 2021
Item
Operating Activities Net Income before Extraordinaries 10.31B 11.05B 8.23B 12.02B 11.57B
Net Income Growth - 7.20% -25.52% 46.01% -3.70%
Depreciation, Depletion & Amortization 6.61B 6.82B 7.42B 7.51B 7.06B
... ... ... ... ... ...
Net Operating Cash Flow 14.13B 13.95B 14.81B 10.48B 12.87B
Net Operating Cash Flow Growth - -1.32% 6.22% -29.28% 22.80%
Net Operating Cash Flow / Sales 40.42% 38.71% 40.57% 28.49% 35.95%
Investing Activities Capital Expenditures (8.37B) (8.08B) (7.95B) (4.14B) (5.29B)
Capital Expenditures Growth - 3.52% 1.56% 47.91% -27.75%
Capital Expenditures / Sales -23.94% -22.41% -21.77% -11.26% -14.78%
... ... ... ... ... ...
Net Investing Cash Flow (8.07B) (8.37B) (8.83B) (4.23B) (5.31B)
Net Investing Cash Flow Growth - -3.77% -5.42% 52.03% -25.42%
Net Investing Cash Flow / Sales -23.07% -23.23% -24.17% -11.51% -14.83%
Financing Activities Cash Dividends Paid - Total (5.6B) (5.73B) (6B) (4.87B) (3.53B)
Common Dividends (5.6B) (5.73B) (6B) (4.87B) (3.53B)
Preferred Dividends - - - - -
... ... ... ... ... ...
Free Cash Flow 5.76B 5.87B 6.87B 6.34B 7.58B
Free Cash Flow Growth - 1.89% 16.91% -7.72% 19.57%
Free Cash Flow Yield - - - - 3.30
# Quarter cash flow
stm.get_cash_flow('IAM', frequency='quarter')
31-Dec-2019 30-Jun-2020 31-Dec-2020 30-Jun-2021 31-Dec-2021
Item
Operating Activities Net Income before Extraordinaries 2.37B 5.84B 6.18B 5.56B 6.02B
Net Income Growth - 146.35% 5.93% -10.11% 8.26%
Depreciation, Depletion & Amortization 3.81B (759M) 8.27B 3.81B 3.25B
... ... ... ... ... ...
Net Operating Cash Flow 8.95B 1.86B 8.62B 5.81B 7.05B
Net Operating Cash Flow Growth - -79.27% 364.44% -32.56% 21.31%
Net Operating Cash Flow / Sales 47.94% 10.13% 46.73% 32.69% 39.16%
Investing Activities Capital Expenditures (3.73B) (2.29B) (1.85B) (2.74B) (2.55B)
Capital Expenditures Growth - 38.69% 18.93% -47.57% 6.65%
Capital Expenditures / Sales -19.98% -12.48% -10.05% -15.39% -14.18%
... ... ... ... ... ...
Net Investing Cash Flow (3.56B) (2.4B) (1.84B) (2.76B) (2.55B)
Net Investing Cash Flow Growth - 32.71% 23.40% -50.11% 7.37%
Net Investing Cash Flow / Sales -19.08% -13.08% -9.95% -15.50% -14.18%
Financing Activities Cash Dividends Paid - Total (271M) - (4.87B) - (3.53B)
Common Dividends (271M) - (4.87B) - (3.53B)
Preferred Dividends - - - - -
... ... ... ... ... ...
Free Cash Flow 5.22B (431M) 6.77B 3.08B 4.5B
Free Cash Flow Growth - -108.25% 1,669.84% -54.52% 46.18%
Free Cash Flow Yield - - - - 3.30

Get quote table

Get important data about a given symbol

Args:

  • company str: Ticker symbol(e.g. 'IAM', 'MNG')

Returns:

  • pd.DataFrame: Dataframe of data about the ticker

Example:

stm.get_quote_table('ATW')
Key Data Value
0 Open 473.00
1 Day Range 464.00 - 473.00
2 52 Week Range N/A
3 Market Cap 93.69B
4 Shares Outstanding 215.14M
5 Public Float 69.09M
6 Beta N/A
7 Rev. per Employee 1.933M
8 P/E Ratio 18.04
9 EPS 25.72
10 Yield 3.23%
11 Dividend 6.75
12 Ex-Dividend Date Jul 5, 2021
13 Short Interest N/A
14 % of Float Shorted N/A
15 Average Volume 160.21K

Get market status

Get status of the Moroccan market Returns:

  • str: Status of the market(Open/Closed)

Example:

stm.get_market_status()
Closed

Get company officers

Get company officers of a given symbol

Args:

  • company str: Ticker symbol(e.g. 'IAM', 'MNG')

Returns:

  • pd.DataFrame: Dataframe of names and roles of the officers

Example:

stm.get_company_officers('MNG')
Name Role
0 Imad Toumi Chairman & Chief Executive Officer
1 Mouna Mahfoud Executive Director-Finance
2 Naoual Zine General Manager-Reminex & Projects
3 Lhou Maacha Executive Director-Exploration
4 Youssef el Hajjam General Manager-Bases Metal Operations
5 Karim Khettouch Director
6 Samir Oudghiri Idrissi Director
7 Bassim Jaï Hokimi Director
8 Hassan Ouriagli Director
9 Amina Benkhadra Director
10 Noufissa Kessar Director
11 Mohamed Amine Afsahi Executive Director-Marketing & Commercial
12 Laila Karam Investor Relations Contact
13 Zakaria Rbii Executive Director-HR, Communication & Develop...
14 Frédéric Bernard Tona Independent Director

Get company information

Get information related to the company's location, adresse...

Args:

  • company str: Ticker symbol(e.g. 'IAM', 'MNG')

Returns:

  • pd.DataFrame: Dataframe of information related to the company (e.g. Name, Adresse, Phone...)

Example:

stm.get_company_info('MNG')
Item Value
0 Name Managem
1 Adresse Twin Center, Tower A Angle Boulevards Zerktoun...
2 Phone +212 522 956-565
3 Industry General Mining
4 Sector Basic Materials/Resources
5 Description Managem SA engages in mining and hydrometallur...

License

This project is licensed under the terms of the MIT license.

Owner
Salah Eddine LABIAD
Data Science student and Cybersecurity enthusiast.
Salah Eddine LABIAD
Optimize Trading Strategies Using Freqtrade

Optimize trading strategy using Freqtrade Short demo on building, testing and optimizing a trading strategy using Freqtrade. The DevBootstrap YouTube

DevBootstrap 139 Jan 01, 2023
Keras attention models including botnet,CoaT,CoAtNet,CMT,cotnet,halonet,resnest,resnext,resnetd,volo,mlp-mixer,resmlp,gmlp,levit

Keras_cv_attention_models Keras_cv_attention_models Usage Basic Usage Layers Model surgery AotNet ResNetD ResNeXt ResNetQ BotNet VOLO ResNeSt HaloNet

319 Dec 28, 2022
Learning Modified Indicator Functions for Surface Reconstruction

Learning Modified Indicator Functions for Surface Reconstruction In this work, we propose a learning-based approach for implicit surface reconstructio

4 Apr 18, 2022
The final project of "Applying AI to EHR Data" of "AI for Healthcare" nanodegree - Udacity.

Patient Selection for Diabetes Drug Testing Project Overview EHR data is becoming a key source of real-world evidence (RWE) for the pharmaceutical ind

Omar Laham 1 Jan 14, 2022
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification

Understanding Bayesian Classification This repository hosts the code to reproduce the results presented in the paper On Uncertainty, Tempering, and Da

Sanyam Kapoor 18 Nov 17, 2022
[CVPR'21] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving

TransFuser This repository contains the code for the CVPR 2021 paper Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. If you find our

695 Jan 05, 2023
Parasite: a tool allowing you to compress and decompress files, to reduce their size

🦠 Parasite 🦠 Parasite is a tool written in Python3 allowing you to "compress" any file, reducing its size. ⭐ Features ⭐ + Fast + Good optimization,

Billy 30 Nov 25, 2022
Taichi Course Homework Template

太极图形课S1-标题部分 这个作业未来或将是你的开源项目,标题的内容可以来自作业中的核心关键词,让读者一眼看出你所完成的工作/做出的好玩demo 如果暂时未想好,起名时可以参考“太极图形课S1-xxx作业” 如下是作业(项目)展开说明的方法,可以帮大家理清思路,并且也对读者非常友好,请小伙伴们多多参

TaichiCourse 30 Nov 19, 2022
When are Iterative GPs Numerically Accurate?

When are Iterative GPs Numerically Accurate? This is a code repository for the paper "When are Iterative GPs Numerically Accurate?" by Wesley Maddox,

Wesley Maddox 1 Jan 06, 2022
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)

51 Dec 01, 2022
Boston House Prediction Valuation Tool

Boston-House-Prediction-Valuation-Tool From Below Anlaysis The Valuation Tool is Designed Correlation Matrix Regrssion Analysis Between Target Vs Pred

0 Sep 09, 2022
LBBA-boosted WSOD

LBBA-boosted WSOD Summary Our code is based on ruotianluo/pytorch-faster-rcnn and WSCDN Sincerely thanks for your resources. Newer version of our code

Martin Dong 20 Sep 19, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 734 Jan 03, 2023
CCCL: Contrastive Cascade Graph Learning.

CCGL: Contrastive Cascade Graph Learning This repo provides a reference implementation of Contrastive Cascade Graph Learning (CCGL) framework as descr

Xovee Xu 19 Dec 05, 2022
A Strong Baseline for Image Semantic Segmentation

A Strong Baseline for Image Semantic Segmentation Introduction This project is an open source semantic segmentation toolbox based on PyTorch. It is ba

Clark He 49 Sep 20, 2022
Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)

This repository contains tools to simulate the ground filtering process of a registered point cloud. The repository contains two filtering methods. The first method uses a normal vector, and fit to p

5 Aug 25, 2022
MetaDrive: Composing Diverse Scenarios for Generalizable Reinforcement Learning

MetaDrive: Composing Diverse Driving Scenarios for Generalizable RL [ Documentation | Demo Video ] MetaDrive is a driving simulator with the following

DeciForce: Crossroads of Machine Perception and Autonomy 276 Jan 04, 2023
CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms

CARLA - Counterfactual And Recourse Library CARLA is a python library to benchmark counterfactual explanation and recourse models. It comes out-of-the

Carla Recourse 200 Dec 28, 2022
Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Mingrui Yu 3 Jan 07, 2022
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

Utkarsh Ojha 251 Dec 11, 2022