Custom implementation of Corrleation Module

Overview

PyPI

Pytorch Correlation module

this is a custom C++/Cuda implementation of Correlation module, used e.g. in FlowNetC

This tutorial was used as a basis for implementation, as well as NVIDIA's cuda code

  • Build and Install C++ and CUDA extensions by executing python setup.py install,
  • Benchmark C++ vs. CUDA by running python benchmark.py {cpu, cuda},
  • Run gradient checks on the code by running python grad_check.py --backend {cpu, cuda}.

Requirements

This module is expected to compile for Pytorch 1.6.

Installation

this module is available on pip

pip install spatial-correlation-sampler

For a cpu-only version, you can install from source with

python setup_cpu.py install

Known Problems

This module needs compatible gcc version and CUDA to be compiled. Namely, CUDA 9.1 and below will need gcc5, while CUDA 9.2 and 10.0 will need gcc7 See this issue for more information

Usage

API has a few difference with NVIDIA's module

  • output is now a 5D tensor, which reflects the shifts horizontal and vertical.
input (B x C x H x W) -> output (B x PatchH x PatchW x oH x oW)
  • Output sizes oH and oW are no longer dependant of patch size, but only of kernel size and padding
  • Patch size patch_size is now the whole patch, and not only the radii.
  • stride1 is now stride andstride2 is dilation_patch, which behave like dilated convolutions
  • equivalent max_displacement is then dilation_patch * (patch_size - 1) / 2.
  • dilation is a new parameter, it acts the same way as dilated convolution regarding the correlation kernel
  • to get the right parameters for FlowNetC, you would have
kernel_size=1
patch_size=21,
stride=1,
padding=0,
dilation=1
dilation_patch=2

Example

import torch
from spatial_correlation_sampler import SpatialCorrelationSampler, 

device = "cuda"
batch_size = 1
channel = 1
H = 10
W = 10
dtype = torch.float32

input1 = torch.randint(1, 4, (batch_size, channel, H, W), dtype=dtype, device=device, requires_grad=True)
input2 = torch.randint_like(input1, 1, 4).requires_grad_(True)

#You can either use the function or the module. Note that the module doesn't contain any parameter tensor.

#function

out = spatial_correlation_sample(input1,
	                         input2,
                                 kernel_size=3,
                                 patch_size=1,
                                 stride=2,
                                 padding=0,
                                 dilation=2,
                                 dilation_patch=1)

#module

correlation_sampler = SpatialCorrelationSampler(
    kernel_size=3,
    patch_size=1,
    stride=2,
    padding=0,
    dilation=2,
    dilation_patch=1)
out = correlation_sampler(input1, input2)

Benchmark

  • default parameters are from benchmark.py, FlowNetC parameters are same as use in FlowNetC with a batch size of 4, described in this paper, implemented here and here.
  • Feel free to file an issue to add entries to this with your hardware !

CUDA Benchmark

  • See here for a benchmark script working with NVIDIA's code, and Pytorch.
  • Benchmark are launched with environment variable CUDA_LAUNCH_BLOCKING set to 1.
  • Only float32 is benchmarked.
  • FlowNetC correlation parameters where launched with the following command:
CUDA_LAUNCH_BLOCKING=1 python benchmark.py --scale ms -k1 --patch 21 -s1 -p0 --patch_dilation 2 -b4 --height 48 --width 64 -c256 cuda -d float

CUDA_LAUNCH_BLOCKING=1 python NV_correlation_benchmark.py --scale ms -k1 --patch 21 -s1 -p0 --patch_dilation 2 -b4 --height 48 --width 64 -c256
implementation Correlation parameters device pass min time avg time
ours default 980 GTX forward 5.745 ms 5.851 ms
ours default 980 GTX backward 77.694 ms 77.957 ms
NVIDIA default 980 GTX forward 13.779 ms 13.853 ms
NVIDIA default 980 GTX backward 73.383 ms 73.708 ms
ours FlowNetC 980 GTX forward 26.102 ms 26.179 ms
ours FlowNetC 980 GTX backward 208.091 ms 208.510 ms
NVIDIA FlowNetC 980 GTX forward 35.363 ms 35.550 ms
NVIDIA FlowNetC 980 GTX backward 283.748 ms 284.346 ms

Notes

  • The overhead of our implementation regarding kernel_size > 1 during backward needs some investigation, feel free to dive in the code to improve it !
  • The backward pass of NVIDIA is not entirely correct when stride1 > 1 and kernel_size > 1, because not everything is computed, see here.

CPU Benchmark

  • No other implementation is avalaible on CPU.
  • It is obviously not recommended to run it on CPU if you have a GPU.
Correlation parameters device pass min time avg time
default E5-2630 v3 @ 2.40GHz forward 159.616 ms 188.727 ms
default E5-2630 v3 @ 2.40GHz backward 282.641 ms 294.194 ms
FlowNetC E5-2630 v3 @ 2.40GHz forward 2.138 s 2.144 s
FlowNetC E5-2630 v3 @ 2.40GHz backward 7.006 s 7.075 s
Owner
Clément Pinard
PhD ENSTA Paris, Deep Learning Engineer @ ContentSquare
Clément Pinard
Vertex AI: Serverless framework for MLOPs (ESP / ENG)

Vertex AI: Serverless framework for MLOPs (ESP / ENG) Español Qué es esto? Este repo contiene un pipeline end to end diseñado usando el SDK de Kubeflo

Hernán Escudero 2 Apr 28, 2022
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Federico Galatolo 172 Dec 22, 2022
Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.

Modeling High-Frequency Limit Order Book Dynamics Using Machine Learning Framework to capture the dynamics of high-frequency limit order books. Overvi

Chang-Shu Chung 1.3k Jan 07, 2023
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Ubisoft 76 Dec 30, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
PyTorch experiments with the Zalando fashion-mnist dataset

zalando-pytorch PyTorch experiments with the Zalando fashion-mnist dataset Project Organization ├── LICENSE ├── Makefile - Makefile with co

Federico Baldassarre 31 Sep 25, 2021
Single cell current best practices tutorial case study for the paper:Luecken and Theis, "Current best practices in single-cell RNA-seq analysis: a tutorial"

Scripts for "Current best-practices in single-cell RNA-seq: a tutorial" This repository is complementary to the publication: M.D. Luecken, F.J. Theis,

Theis Lab 968 Dec 28, 2022
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).

Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a

Optimization for AI 176 Jan 07, 2023
HackBMU-5.0-Team-Ctrl-Alt-Elite - HackBMU 5.0 Team Ctrl Alt Elite

HackBMU-5.0-Team-Ctrl-Alt-Elite The search is over. We present to you ‘Health-A-

3 Feb 19, 2022
VideoGPT: Video Generation using VQ-VAE and Transformers

VideoGPT: Video Generation using VQ-VAE and Transformers [Paper][Website][Colab][Gradio Demo] We present VideoGPT: a conceptually simple architecture

Wilson Yan 470 Dec 30, 2022
Code for BMVC2021 "MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation"

MOS-Multi-Task-Face-Detect Introduction This repo is the official implementation of "MOS: A Low Latency and Lightweight Framework for Face Detection,

104 Dec 08, 2022
A package for "Procedural Content Generation via Reinforcement Learning" OpenAI Gym interface.

Readme: Illuminating Diverse Neural Cellular Automata for Level Generation This is the codebase used to generate the results presented in the paper av

Sam Earle 27 Jan 05, 2023
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022
This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems.

Amortized Assimilation This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems. Abstract: T

4 Aug 16, 2022
🔊 Audio and fastai v2

Fastaudio An audio module for fastai v2. We want to help you build audio machine learning applications while minimizing the need for audio domain expe

152 Dec 28, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 02, 2023
A Python implementation of active inference for Markov Decision Processes

A Python package for simulating Active Inference agents in Markov Decision Process environments. Please see our companion preprint on arxiv for an ove

235 Dec 21, 2022
ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models

LM-BFF (Better Few-shot Fine-tuning of Language Models) This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Lea

Princeton Natural Language Processing 607 Jan 07, 2023
Official code for our EMNLP2021 Outstanding Paper MindCraft: Theory of Mind Modeling for Situated Dialogue in Collaborative Tasks

MindCraft Authors: Cristian-Paul Bara*, Sky CH-Wang*, Joyce Chai This is the official code repository for the paper (arXiv link): Cristian-Paul Bara,

Situated Language and Embodied Dialogue (SLED) Research Group 14 Dec 29, 2022
CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer

CycleTransGAN-EVC CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer Demo emotion CycleTransGAN CycleTransGAN Cycle

24 Dec 15, 2022