Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

Related tags

Deep LearningTGraM
Overview

TGraM

Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling,
Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu

Abstract

Recently, satellite video has become an emerging means of earth observation, providing the possibility of tracking moving objects. However, the existing multi-object trackers are commonly designed for natural scenes without considering the characteristics of remotely sensed data. In addition, most trackers are composed of two independent stages of detection and re-identification (ReID), which means that they cannot be mutually promoted. To this end, we propose an end-to-end online framework, which is called TGraM, for multi-object tracking in satellite videos. It models multi-object tracking as a graph information reasoning procedure from the multi-task learning perspective. Specifically, a graph-based spatiotemporal reasoning module is presented to mine the potential high-order correlations between video frames. Furthermore, considering the inconsistency of optimization objectives between detection and ReID, a multi-task gradient adversarial learning strategy is designed to regularize each task-specific network. Additionally, aiming at the data scarcity in this field, a large-scale and high-resolution Jilin1 satellite video dataset for multi-object tracking (AIR-MOT) is built for the experiments. Compared with state-of-the-art multi-object trackers, TGraM achieves efficient collaborative learning between detection and ReID, improving the tracking accuracy by 1.2 MOTA.

Paper

Please cite our paper if you find the code or dataset useful for your research.

@ARTICLE{He-TGRS-TGraM-2022,
  author={Q. {He} and X. {Sun} and Z. {Yan} and B. {Li} and K. {Fu}},
  journal={IEEE Transactions on Geoscience and Remote Sensing}, 
  title={Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling}, 
  year={2022},
  volume={},
  number={},
  pages={1-14},
  doi={}}

Installation

  • Clone this repo, and we'll call the directory that you cloned as ${TGRAM_ROOT}
  • Install dependencies. We use python 3.7 and pytorch >= 1.2.0
conda create -n TGraM
conda activate TGraM
conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 -c pytorch
cd ${TGRAM_ROOT}
pip install -r requirements.txt
  • We use DCNv2 in our backbone network and more details can be found in their repo.
git clone https://github.com/CharlesShang/DCNv2
cd DCNv2
./make.sh
  • In order to run the code for demos, you also need to install ffmpeg.

Data preparation

AIR-MOT
   |——————images
   |        └——————train
   |        └——————test
   └——————labels_with_ids
            └——————train(empty)

Then, you can change the seq_root and label_root in src/gen_labels_airmot.py and run:

cd src
python gen_labels_airmot.py

to generate the labels of AIR-MOT.

Training

  • Download the training data
  • Change the dataset root directory 'root' in src/lib/cfg/data.json and 'data_dir' in src/lib/opts.py
  • Train on AIR-MOT:
sh experiments/airmot.sh

Tracking

  • The default settings run tracking on the testing dataset from AIR-MOT. Using the trained model, you can run:
cd src
CUDA_VISIBLE_DEVICES=0 python track_half_air.py mot --load_model ../exp/airmot/210529_airmot_tgrammbseg/model_last.pth --conf_thres 0.4 --val_mot17 True --gpus 5 --data_dir '/workspace/tgram/src/data/' --arch tgrammbseg  --num_frames 3 --num_workers 2 --output_dir '/workspace/tgram/result/' --save_images --down_ratio 4 --exp_name 210526_tgrammbseg_cam

to obtain the tracking results. You can also set save_images=True in src/track.py to save the visualization results of each frame.

Train on custom dataset

You can train TGraM on custom dataset by following several steps bellow:

  1. Generate one txt label file for one image. Each line of the txt label file represents one object. The format of the line is: "class id x_center/img_width y_center/img_height w/img_width h/img_height". You can modify src/gen_labels_16.py to generate label files for your custom dataset.
  2. Generate files containing image paths. The example files are in src/data/. Some similar code can be found in src/gen_labels_crowd.py
  3. Create a json file for your custom dataset in src/lib/cfg/. You need to specify the "root" and "train" keys in the json file. You can find some examples in src/lib/cfg/.
  4. Add --data_cfg '../src/lib/cfg/your_dataset.json' when training.

Acknowledgement

A large part of the code is borrowed from Zhongdao/Towards-Realtime-MOT and xingyizhou/CenterNet. Thanks for their wonderful works.

Owner
Qibin He
Qibin He
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models

Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T

Shuangfei Zhai 18 Mar 05, 2022
Power Core Simulator!

Power Core Simulator Power Core Simulator is a simulator based off the Roblox game "Pinewood Builders Computer Core". In this simulator, you can choos

BananaJeans 1 Nov 13, 2021
GeoTransformer - Geometric Transformer for Fast and Robust Point Cloud Registration

Geometric Transformer for Fast and Robust Point Cloud Registration PyTorch imple

Zheng Qin 220 Jan 05, 2023
This Artificial Intelligence program can take a black and white/grayscale image and generate a realistic or plausible colorized version of the same picture.

Colorizer The point of this project is to write a program capable of taking a black and white / grayscale image, and generating a realistic or plausib

Maitri Shah 1 Jan 06, 2022
A TensorFlow implementation of the Mnemonic Descent Method.

MDM A Tensorflow implementation of the Mnemonic Descent Method. Mnemonic Descent Method: A recurrent process applied for end-to-end face alignment G.

123 Oct 07, 2022
NumQMBasic - A mini-course offered to Undergrad physics students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 35 Dec 05, 2022
Help you understand Manual and w/ Clutch point while driving.

简体中文 forza_auto_gear forza_auto_gear is a tool for Forza Horizon 5. It will help us understand the best gear shift point using Manual or w/ Clutch in

15 Oct 08, 2022
SciPy fixes and extensions

scipyx SciPy is large library used everywhere in scientific computing. That's why breaking backwards-compatibility comes as a significant cost and is

Nico Schlömer 16 Jul 17, 2022
Official Repository of NeurIPS2021 paper: PTR

PTR: A Benchmark for Part-based Conceptual, Relational, and Physical Reasoning Figure 1. Dataset Overview. Introduction A critical aspect of human vis

Yining Hong 32 Jun 02, 2022
Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

183 Dec 28, 2022
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics

Dataset Cartography Code for the paper Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics at EMNLP 2020. This repository cont

AI2 125 Dec 22, 2022
A series of Jupyter notebooks with Chinese comment that walk you through the fundamentals of Machine Learning and Deep Learning in python using Scikit-Learn and TensorFlow.

Hands-on-Machine-Learning 目的 这份笔记旨在帮助中文学习者以一种较快较系统的方式入门机器学习, 是在学习Hands-on Machine Learning with Scikit-Learn and TensorFlow这本书的 时候做的个人笔记: 此项目的可取之处 原书的

Baymax 1.5k Dec 21, 2022
QQ Browser 2021 AI Algorithm Competition Track 1 1st Place Program

QQ Browser 2021 AI Algorithm Competition Track 1 1st Place Program

249 Jan 03, 2023
Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN

Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN If you use this code for your research, please cite ou

41 Dec 08, 2022
ML-Ensemble – high performance ensemble learning

A Python library for high performance ensemble learning ML-Ensemble combines a Scikit-learn high-level API with a low-level computational graph framew

Sebastian Flennerhag 764 Dec 31, 2022
Semantic Segmentation Architectures Implemented in PyTorch

pytorch-semseg Semantic Segmentation Algorithms Implemented in PyTorch This repository aims at mirroring popular semantic segmentation architectures i

Meet Shah 3.3k Dec 29, 2022
Off-policy continuous control in PyTorch, with RDPG, RTD3 & RSAC

arXiv technical report soon available. we are updating the readme to be as comprehensive as possible Please ask any questions in Issues, thanks. Intro

Zhihan 31 Dec 30, 2022
Code for the paper: Hierarchical Reinforcement Learning With Timed Subgoals, published at NeurIPS 2021

Hierarchical reinforcement learning with Timed Subgoals (HiTS) This repository contains code for reproducing experiments from our paper "Hierarchical

Autonomous Learning Group 21 Dec 03, 2022
Object detection evaluation metrics using Python.

Object detection evaluation metrics using Python.

Louis Facun 2 Sep 06, 2022