Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

Related tags

Deep LearningTGraM
Overview

TGraM

Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling,
Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu

Abstract

Recently, satellite video has become an emerging means of earth observation, providing the possibility of tracking moving objects. However, the existing multi-object trackers are commonly designed for natural scenes without considering the characteristics of remotely sensed data. In addition, most trackers are composed of two independent stages of detection and re-identification (ReID), which means that they cannot be mutually promoted. To this end, we propose an end-to-end online framework, which is called TGraM, for multi-object tracking in satellite videos. It models multi-object tracking as a graph information reasoning procedure from the multi-task learning perspective. Specifically, a graph-based spatiotemporal reasoning module is presented to mine the potential high-order correlations between video frames. Furthermore, considering the inconsistency of optimization objectives between detection and ReID, a multi-task gradient adversarial learning strategy is designed to regularize each task-specific network. Additionally, aiming at the data scarcity in this field, a large-scale and high-resolution Jilin1 satellite video dataset for multi-object tracking (AIR-MOT) is built for the experiments. Compared with state-of-the-art multi-object trackers, TGraM achieves efficient collaborative learning between detection and ReID, improving the tracking accuracy by 1.2 MOTA.

Paper

Please cite our paper if you find the code or dataset useful for your research.

@ARTICLE{He-TGRS-TGraM-2022,
  author={Q. {He} and X. {Sun} and Z. {Yan} and B. {Li} and K. {Fu}},
  journal={IEEE Transactions on Geoscience and Remote Sensing}, 
  title={Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling}, 
  year={2022},
  volume={},
  number={},
  pages={1-14},
  doi={}}

Installation

  • Clone this repo, and we'll call the directory that you cloned as ${TGRAM_ROOT}
  • Install dependencies. We use python 3.7 and pytorch >= 1.2.0
conda create -n TGraM
conda activate TGraM
conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 -c pytorch
cd ${TGRAM_ROOT}
pip install -r requirements.txt
  • We use DCNv2 in our backbone network and more details can be found in their repo.
git clone https://github.com/CharlesShang/DCNv2
cd DCNv2
./make.sh
  • In order to run the code for demos, you also need to install ffmpeg.

Data preparation

AIR-MOT
   |——————images
   |        └——————train
   |        └——————test
   └——————labels_with_ids
            └——————train(empty)

Then, you can change the seq_root and label_root in src/gen_labels_airmot.py and run:

cd src
python gen_labels_airmot.py

to generate the labels of AIR-MOT.

Training

  • Download the training data
  • Change the dataset root directory 'root' in src/lib/cfg/data.json and 'data_dir' in src/lib/opts.py
  • Train on AIR-MOT:
sh experiments/airmot.sh

Tracking

  • The default settings run tracking on the testing dataset from AIR-MOT. Using the trained model, you can run:
cd src
CUDA_VISIBLE_DEVICES=0 python track_half_air.py mot --load_model ../exp/airmot/210529_airmot_tgrammbseg/model_last.pth --conf_thres 0.4 --val_mot17 True --gpus 5 --data_dir '/workspace/tgram/src/data/' --arch tgrammbseg  --num_frames 3 --num_workers 2 --output_dir '/workspace/tgram/result/' --save_images --down_ratio 4 --exp_name 210526_tgrammbseg_cam

to obtain the tracking results. You can also set save_images=True in src/track.py to save the visualization results of each frame.

Train on custom dataset

You can train TGraM on custom dataset by following several steps bellow:

  1. Generate one txt label file for one image. Each line of the txt label file represents one object. The format of the line is: "class id x_center/img_width y_center/img_height w/img_width h/img_height". You can modify src/gen_labels_16.py to generate label files for your custom dataset.
  2. Generate files containing image paths. The example files are in src/data/. Some similar code can be found in src/gen_labels_crowd.py
  3. Create a json file for your custom dataset in src/lib/cfg/. You need to specify the "root" and "train" keys in the json file. You can find some examples in src/lib/cfg/.
  4. Add --data_cfg '../src/lib/cfg/your_dataset.json' when training.

Acknowledgement

A large part of the code is borrowed from Zhongdao/Towards-Realtime-MOT and xingyizhou/CenterNet. Thanks for their wonderful works.

Owner
Qibin He
Qibin He
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows

FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows.

Meta Incubator 272 Jan 02, 2023
PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA

Soft DTW Loss Function for PyTorch in CUDA This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch

Keon Lee 76 Dec 20, 2022
BirdCLEF 2021 - Birdcall Identification 4th place solution

BirdCLEF 2021 - Birdcall Identification 4th place solution My solution detail kaggle discussion Inference Notebook (best submission) Environment Use K

tattaka 42 Jan 02, 2023
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

5 Feb 04, 2022
Wenzhou-Kean University AI-LAB

AI-LAB This is Wenzhou-Kean University AI-LAB. Our research interests are in Computer Vision and Natural Language Processing. Computer Vision Please g

WKU AI-LAB 10 May 05, 2022
Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Daniel Seita 121 Dec 30, 2022
Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

Zhichun Guo 94 Dec 12, 2022
CoSMA: Convolutional Semi-Regular Mesh Autoencoder. From Paper "Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes"

Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes Implementation of CoSMA: Convolutional Semi-Regular Mesh Autoencoder arXiv p

Fraunhofer SCAI 10 Oct 11, 2022
A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squares.

W.I.P-Aim-Memory-Game A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squar

dE_soot 1 Dec 08, 2021
PiRank: Learning to Rank via Differentiable Sorting

PiRank: Learning to Rank via Differentiable Sorting This repository provides a reference implementation for learning PiRank-based models as described

54 Dec 17, 2022
A trusty face recognition research platform developed by Tencent Youtu Lab

Introduction TFace: A trusty face recognition research platform developed by Tencent Youtu Lab. It provides a high-performance distributed training fr

Tencent 956 Jan 01, 2023
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective

Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective Zhengzhuo Xu, Zenghao Chai, Chun Yuan This is the PyTorch implement

Sincere 16 Dec 15, 2022
Luminaire is a python package that provides ML driven solutions for monitoring time series data.

A hands-off Anomaly Detection Library Table of contents What is Luminaire Quick Start Time Series Outlier Detection Workflow Anomaly Detection for Hig

Zillow 670 Jan 02, 2023
CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary.

CUP-DNN CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary. The model was trained on the expre

1 Oct 27, 2021
Magic tool for managing internet connection in local network by @zalexdev

Megacut ✂️ A new powerful Python3 tool for managing internet on a local network Installation git clone https://github.com/stryker-project/megacut cd m

Stryker 12 Dec 15, 2022
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation

Attention Gated Networks (Image Classification & Segmentation) Pytorch implementation of attention gates used in U-Net and VGG-16 models. The framewor

Ozan Oktay 1.6k Dec 30, 2022
repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments

repro_eval repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments. The measures were d

IR Group at Technische Hochschule Köln 9 May 25, 2022
Anonymous implementation of KSL

k-Step Latent (KSL) Implementation of k-Step Latent (KSL) in PyTorch. Representation Learning for Data-Efficient Reinforcement Learning [Paper] Code i

1 Nov 10, 2021
Deep learning with TensorFlow and earth observation data.

Deep Learning with TensorFlow and EO Data Complete file set for Jupyter Book Autor: Development Seed Date: 04 October 2021 ISBN: (to come) Notebook tu

Development Seed 20 Nov 16, 2022
D2Go is a toolkit for efficient deep learning

D2Go D2Go is a production ready software system from FacebookResearch, which supports end-to-end model training and deployment for mobile platforms. W

Facebook Research 744 Jan 04, 2023