PiRank: Learning to Rank via Differentiable Sorting

Related tags

Deep Learningpirank
Overview

PiRank: Learning to Rank via Differentiable Sorting

This repository provides a reference implementation for learning PiRank-based models as described in the paper:

PiRank: Learning to Rank via Differentiable Sorting
Robin Swezey, Aditya Grover, Bruno Charron and Stefano Ermon.
Paper: https://arxiv.org/abs/2012.06731

Requirements

The codebase is implemented in Python 3.7. To install the necessary base requirements, run the following commands:

pip install -r requirements.txt

If you intend to use a GPU, modify requirements.txt to install tensorflow-gpu instead of tensorflow.

You will also need the NeuralSort implementation available here. Make sure it is added to your PYTHONPATH.

Datasets

PiRank was tested on the two following datasets:

Additionally, the code is expected to work with any dataset stored in the standard LibSVM format used for LTR experiments.

Scripts

There are two scripts for the code:

  • pirank_simple.py implements a simple depth-1 PiRank loss (d=1). It is used in the experiments of sections 4.1 (benchmark evaluation on MSLR-WEB30K and Yahoo! C14 datasets), 4.2.1 (effect of temperature parameter), and 4.2.2 (effect of training list size).

  • pirank_deep.py implements the deeper PiRank losses (d>=1). It is used for the experiments of section 4.2.3 and comes with a convenient synthetic data generator as well as more tuning options.

Options

Options are handled by Sacred (see Examples section below).

pirank_simple.py and pirank_deep.py

PiRank-related:

Parameter Default Value Description
loss_fn pirank_simple_loss The loss function to use (either a TFR RankingLossKey, or loss function from the script)
ste False Whether to use the Straight-Through Estimator
ndcg_k 15 [email protected] cutoff when using NS-NDCG loss

NeuralSort-related:

Parameter Default Value Description
tau 5 Temperature
taustar 1e-10 Temperature for trues and straight-through estimation.

TensorFlow-Ranking and architecture-related:

Parameter Default Value Description
hidden_layers "256,tanh,128,tanh,64,tanh" Hidden layers for an example-wise feedforward network in the format size,activation,...,size,activation
num_features 136 Number of features per document. The default value is for MSLR and depends on the dataset (e.g. for Yahoo!, please change to 700).
list_size 100 List size used for training
group_size 1 Group size used in score function

Training-related:

Parameter Default Value Description
train_path "/data/MSLR-WEB30K/Fold*/train.txt" Input file path used for training
vali_path "/data/MSLR-WEB30K/Fold*/vali.txt" Input file path used for validation
test_path "/data/MSLR-WEB30K/Fold*/test.txt" Input file path used for testing
model_dir None Output directory for models
num_epochs 200 Number of epochs to train, set 0 to just test
lr 1e-4 initial learning rate
batch_size 32 The batch size for training
num_train_steps None Number of steps for training
num_vali_steps None Number of steps for validation
num_test_steps None Number of steps for testing
learning_rate 0.01 Learning rate for optimizer
dropout_rate 0.5 The dropout rate before output layer
optimizer Adagrad The optimizer for gradient descent

Sacred:

In addition, you can use regular parameters from Sacred (such as -m for logging the experiment to MongoDB).

pirank_deep.py only

Parameter Default Value Description
merge_block_size None Block size used if merging, None if not merging
top_k None Use a different Top-k for merging than final [email protected] for loss
straight_backprop False Backpropagate on scores only through NS operator
full_loss False Use the complete loss at the end of merge
tau_scheme None Which scheme to use for temperature going deeper (default: constant)
data_generator None Data generator (default: TFR\s libsvm); use this for synthetic generation
num_queries 30000 Number of queries for synthetic data generator
num_query_features 10 Number of columns used as factors for each query by synthetic data generator
actual_list_size None Size of actual list per query in synthetic data generation
train_path "/data/MSLR-WEB30K/Fold*/train.txt" Input file path used for training; alternatively value of seed if using data generator
vali_path "/data/MSLR-WEB30K/Fold*/vali.txt" Input file path used for validation; alternatively value of seed if using data generator
test_path "/data/MSLR-WEB30K/Fold*/test.txt" Input file path used for testing; alternatively value of seed if using data generator
with_opa True Include pairwise metric OPA

Examples

Run the benchmark experiment of section 4.1 with PiRank simple loss on MSLR-WEB30K

cd pirank
python3 pirank_simple.py with loss_fn=pirank_simple_loss \
    ndcg_k=10 \
    tau=5 \
    list_size=80 \
    hidden_layers=256,relu,256,relu,128,relu,64,relu \
    train_path=/data/MSLR-WEB30K/Fold1/train.txt \
    vali_path=/data/MSLR-WEB30K/Fold1/vali.txt \
    test_path=/data/MSLR-WEB30K/Fold1/test.txt \
    num_features=136 \
    optimizer=Adam \
    learning_rate=0.00001 \
    num_epochs=100 \
    batch_size=16 \
    model_dir=/tmp/model

Run the benchmark experiment of section 4.1 with PiRank simple loss on Yahoo! C14

cd pirank
python3 pirank_simple.py with loss_fn=pirank_simple_loss \
    ndcg_k=10 \
    tau=5 \
    list_size=80 \
    hidden_layers=256,relu,256,relu,128,relu,64,relu \
    train_path=/data/YAHOO/set1.train.txt \
    vali_path=/data/YAHOO/set1.valid.txt \
    test_path=/data/YAHOO/set1.test.txt \
    num_features=700 \
    optimizer=Adam \
    learning_rate=0.00001 \
    num_epochs=100 \
    batch_size=16 \
    model_dir=/tmp/model

Run the benchmark experiment of section 4.1 with classic LambdaRank on MSLR-WEB30K

cd pirank
python3 pirank_simple.py with loss_fn=lambda_rank_loss \
    ndcg_k=10 \
    tau=5 \
    list_size=80 \
    hidden_layers=256,relu,256,relu,128,relu,64,relu \
    train_path=/data/MSLR-WEB30K/Fold1/train.txt \
    vali_path=/data/MSLR-WEB30K/Fold1/vali.txt \
    test_path=/data/MSLR-WEB30K/Fold1/test.txt \
    num_features=136 \
    optimizer=Adam \
    learning_rate=0.00001 \
    num_epochs=100 \
    batch_size=16 \
    model_dir=/tmp/model

Run the scaling ablation experiment of section 4.2.3 using synthetic data generation (d=2)

cd pirank
python3 pirank_deep.py with loss_fn=pirank_deep_loss \
    ndcg_k=10 \
    ste=True \
    merge_block_size=100 \
    tau=5 \
    taustar=1e-10 \
    tau_scheme=square \
    data_generator=synthetic_data_generator \
    actual_list_size=1000 \
    list_size=1000 \
    vali_list_size=1000 \
    test_list_size=1000 \
    full_loss=False \
    train_path=0 \
    vali_path=1 \
    test_path=2 \
    num_queries=1000 \
    num_features=25 \
    num_query_features=5 \
    hidden_layers=256,relu,256,relu,128,relu,128,relu,64,relu,64,relu \
    optimizer=Adam \
    learning_rate=0.00001 \
    num_epochs=100 \
    batch_size=16

Help

If you need help, reach out to Robin Swezey or raise an issue.

Citing

If you find PiRank useful in your research, please consider citing the following paper:

@inproceedings{
swezey2020pirank,
title={PiRank: Learning to Rank via Differentiable Sorting},
author={Robin Swezey and Aditya Grover and Bruno Charron and Stefano Ermon},
year={2020},
url={},
}

PyTorch implementation of the ideas presented in the paper Interaction Grounded Learning (IGL)

Interaction Grounded Learning This repository contains a simple PyTorch implementation of the ideas presented in the paper Interaction Grounded Learni

Arthur Juliani 4 Aug 31, 2022
N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting

N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting Recent progress in neural forecasting instigated significant improvements in the

Cristian Challu 82 Jan 04, 2023
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper

SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi

Nate Veldt 1 Nov 25, 2022
Mind the Trade-off: Debiasing NLU Models without Degrading the In-distribution Performance

Models for natural language understanding (NLU) tasks often rely on the idiosyncratic biases of the dataset, which make them brittle against test cases outside the training distribution.

Ubiquitous Knowledge Processing Lab 22 Jan 02, 2023
BackgroundRemover lets you Remove Background from images and video with a simple command line interface

BackgroundRemover BackgroundRemover is a command line tool to remove background from video and image, made by nadermx to power https://BackgroundRemov

Johnathan Nader 1.7k Dec 30, 2022
This is a Deep Leaning API for classifying emotions from human face and human audios.

Emotion AI This is a Deep Leaning API for classifying emotions from human face and human audios. Starting the server To start the server first you nee

crispengari 5 Oct 02, 2022
Image Fusion Transformer

Image-Fusion-Transformer Platform Python 3.7 Pytorch =1.0 Training Dataset MS-COCO 2014 (T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ram

Vibashan VS 68 Dec 23, 2022
Temporal Knowledge Graph Reasoning Triggered by Memories

MTDM Temporal Knowledge Graph Reasoning Triggered by Memories To alleviate the time dependence, we propose a memory-triggered decision-making (MTDM) n

4 Sep 25, 2022
Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021.

PHDimGeneralization Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021. Overvie

Tolga Birdal 13 Nov 08, 2022
Scripts and misc. stuff related to the PortSwigger Web Academy

PortSwigger Web Academy Notes Mostly scripts to automate the exploits. Going in the order of the recomended learning path - starting with SQLi. Commun

pageinsec 17 Dec 30, 2022
Web-interface + rest API for classification and regression (https://jeff1evesque.github.io/machine-learning.docs)

Machine Learning This project provides a web-interface, as well as a programmatic-api for various machine learning algorithms. Supported algorithms: S

Jeff Levesque 252 Dec 11, 2022
Multi-Modal Fingerprint Presentation Attack Detection: Evaluation On A New Dataset

PADISI USC Dataset This repository analyzes the PADISI-Finger dataset introduced in Multi-Modal Fingerprint Presentation Attack Detection: Evaluation

USC ISI VISTA Computer Vision 6 Feb 06, 2022
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

632 Dec 13, 2022
Official Repository for "Robust On-Policy Data Collection for Data Efficient Policy Evaluation" (NeurIPS 2021 Workshop on OfflineRL).

Robust On-Policy Data Collection for Data-Efficient Policy Evaluation Source code of Robust On-Policy Data Collection for Data-Efficient Policy Evalua

Autonomous Agents Research Group (University of Edinburgh) 2 Oct 09, 2022
JstDoS - HTTP Protocol Stack Remote Code Execution Vulnerability

jstDoS If you are going to skid that, please give credits ! ^^ ¿How works? This

apolo 4 Feb 11, 2022
[PAMI 2020] Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation

Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation This repository contains the source code for

Yun-Chun Chen 60 Nov 25, 2022
QQ Browser 2021 AI Algorithm Competition Track 1 1st Place Program

QQ Browser 2021 AI Algorithm Competition Track 1 1st Place Program

249 Jan 03, 2023
Reinforcement Learning with Q-Learning Algorithm on gym's frozen lake environment implemented in python

Reinforcement Learning with Q Learning Algorithm Q learning algorithm is trained on the gym's frozen lake environment. Libraries Used gym Numpy tqdm P

1 Nov 10, 2021
Official Code for VideoLT: Large-scale Long-tailed Video Recognition (ICCV 2021)

Pytorch Code for VideoLT [Website][Paper] Updates [10/29/2021] Features uploaded to Google Drive, for access please send us an e-mail: zhangxing18 at

Skye 26 Sep 18, 2022