Code for: https://berkeleyautomation.github.io/bags/

Overview

DeformableRavens

Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the project website, which also contains the data we used to train policies. Contents of this README:

Installation

This is how to get the code running on a local machine. First, get conda on the machine if it isn't there already:

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh

Then, create a new Python 3.7 conda environment (e.g., named "py3-defs") and activate it:

conda create -n py3-defs python=3.7
conda activate py3-defs

Then install:

./install_python_ubuntu.sh

Note I: It is tested on Ubuntu 18.04. We have not tried other Ubuntu versions or other operating systems.

Note II: Installing TensorFlow using conda is usually easier than pip because the conda version will ship with the correct CUDA and cuDNN libraries, whereas the pip version is a nightmare regarding version compatibility.

Note III: the code has only been tested with PyBullet 3.0.4. In fact, there are some places which explicitly hard-code this requirement. Using later versions may work but is not recommended.

Environments and Tasks

This repository contains tasks in the ICRA 2021 submission and the predecessor paper on Transporters (presented at CoRL 2020). For the latter paper, there are (roughly) 10 tasks that came pre-shipped; the Transporters paper doesn't test with pushing or insertion-translation, but tests with all others. See Tasks.md for some task-specific documentation

Each task subclasses a Task class and needs to define its own reset(). The Task class defines an oracle policy that's used to get demonstrations (so it is not implemented within each task subclass), and is divided into cases depending on the action, or self.primitive, used.

Similarly, different tasks have different reward functions, but all are integrated into the Task super-class and divided based on the self.metric type: pose or zone.

Code Usage

Experiments start with python main.py, with --disp added for seeing the PyBullet GUI (but not used for large-scale experiments). The general logic for main.py proceeds as follows:

  • Gather expert demonstrations for the task and put it in data/{TASK}, unless there are already a sufficient amount of demonstrations. There are sub-directories for action, color, depth, info, etc., which store the data pickle files with consistent indexing per time step. Caution: this will start "counting" the data from the existing data/ directory. If you want entirely fresh data, delete the relevant file in data/.

  • Given the data, train the designated agent. The logged data is stored in logs/{AGENT}/{TASK}/{DATE}/{train}/ in the form of a tfevent file for TensorBoard. Note: it will do multiple training runs for statistical significance.

For deformables, we actually use a separate load.py script, due to some issues with creating multiple environments.

See Commands.md for commands to reproduce experimental results.

Downloading the Data

We normally generate 1000 demos for each of the tasks. However, this can take a long time, especially for the bag tasks. We have pre-generated datasets for all the tasks we tested with on the project website. Here's how to do this. For example, suppose we want to download demonstration data for the "bag-color-goal" task. Download the demonstration data from the website. Since this is also a goal-conditioned task, download the goal demonstrations as well. Make new data/ and goals/ directories and put the tar.gz files in the respective directories:

deformable-ravens/
    data/
        bag-color-goal_1000_demos_480Hz_filtered_Nov13.tar.gz
    goals/
        bag-color-goal_20_goals_480Hz_Nov19.tar.gz

Note: if you generate data using the main.py script, then it will automatically create the data/ scripts, and similarly for the generate_goals.py script. You only need to manually create data/ and goals/ if you only want to download and get pre-existing datasets in the right spot.

Then untar both of them in their respective directories:

tar -zxvf bag-color-goal_1000_demos_480Hz_filtered_Nov13.tar.gz
tar -zxvf bag-color-goal_20_goals_480Hz_Nov19.tar.gz

Now the data should be ready! If you want to inspect and debug the data, for example the goals data, then do:

python ravens/dataset.py --path goals/bag-color-goal/

Note that by default it saves any content in goals/ to goals_out/ and data in data/ to data_out/. Also, by default, it will download and save images. This can be very computationally intensive if you do this for the full 1000 demos. (The goals/ data only has 20 demos.) You can change this easily in the main method of ravens/datasets.py.

Running the script will print out some interesting data statistics for you.

Miscellaneous

If you have questions, please use the public issue tracker, so that all of us can benefit from your questions.

If you find this code or research paper helpful, please consider citing it:

@inproceedings{seita_bags_2021,
    author  = {Daniel Seita and Pete Florence and Jonathan Tompson and Erwin Coumans and Vikas Sindhwani and Ken Goldberg and Andy Zeng},
    title   = {{Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks}},
    journal = {arXiv preprint arXiv:2012.03385},
    Year    = {2020}
}
Owner
Daniel Seita
Computer science Ph.D. student at UC Berkeley working in Artificial Intelligence.
Daniel Seita
DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data.

DWIPrep: A Robust Preprocessing Pipeline for dMRI Data DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data. The transp

Gal Ben-Zvi 1 Jan 09, 2023
[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

Xiefan Guo 122 Dec 11, 2022
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ

Jonathan Shobrook 305 Dec 21, 2022
Real-time analysis of intracranial neurophysiology recordings.

py_neuromodulation Click this button to run the "Tutorial ML with py_neuro" notebooks: The py_neuromodulation toolbox allows for real time capable pro

Interventional Cognitive Neuromodulation - Neumann Lab Berlin 15 Nov 03, 2022
1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection

This project releases our 1st place solution on ICDAR 2021 Competition on Mathematical Formula Detection. We implement our solution based on MMDetection, which is an open source object detection tool

yuxzho 94 Dec 25, 2022
This repository contains the implementation of the following paper: Cross-Descriptor Visual Localization and Mapping

Cross-Descriptor Visual Localization and Mapping This repository contains the implementation of the following paper: "Cross-Descriptor Visual Localiza

Mihai Dusmanu 81 Oct 06, 2022
Le dataset des images du projet d'IA de 2021

face-mask-dataset-ilc-2021 Le dataset des images du projet d'IA de 2021, Indiquez vos id git dans la issue pour les droits TL;DR: Choisir 200 images J

7 Nov 15, 2021
A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API

Timbre Dissimilarity Metrics A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API Installation pip install -e . Usag

Ben Hayes 21 Jan 05, 2022
High frequency AI based algorithmic trading module.

Flow Flow is a high frequency algorithmic trading module that uses machine learning to self regulate and self optimize for maximum return. The current

59 Dec 14, 2022
SSD: Single Shot MultiBox Detector pytorch implementation focusing on simplicity

SSD: Single Shot MultiBox Detector Introduction Here is my pytorch implementation of 2 models: SSD-Resnet50 and SSDLite-MobilenetV2.

Viet Nguyen 149 Jan 07, 2023
Research code of ICCV 2021 paper "Mesh Graphormer"

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
Aydin is a user-friendly, feature-rich, and fast image denoising tool

Aydin is a user-friendly, feature-rich, and fast image denoising tool that provides a number of self-supervised, auto-tuned, and unsupervised image denoising algorithms.

Royer Lab 99 Dec 14, 2022
This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods

pyLiDAR-SLAM This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods, which can easily be evaluated

Kitware, Inc. 208 Dec 16, 2022
Exporter for Storage Area Network (SAN)

SAN Exporter Prometheus exporter for Storage Area Network (SAN). We all know that each SAN Storage vendor has their own glossary of terms, health/perf

vCloud 32 Dec 16, 2022
[NeurIPS-2020] Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID.

Self-paced Contrastive Learning (SpCL) The official repository for Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID

Yixiao Ge 286 Dec 21, 2022
Boundary IoU API (Beta version)

Boundary IoU API (Beta version) Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C. Berg, Alexander Kirillov [arXiv] [Project] [BibTeX] This API is

Bowen Cheng 177 Dec 29, 2022
Pytorch implementation for "Open Compound Domain Adaptation" (CVPR 2020 ORAL)

Open Compound Domain Adaptation [Project] [Paper] [Demo] [Blog] Overview Open Compound Domain Adaptation (OCDA) is the author's re-implementation of t

Zhongqi Miao 137 Dec 15, 2022
Torchlight2 lan game server tool - A message forwarding tool for Torchlight 2 lan game

Torchlight 2 Lan Game Server Tool A message forwarding tool for Torchlight 2 lan

Huaijun Jiang 3 Nov 01, 2022
Deep Text Search is an AI-powered multilingual text search and recommendation engine with state-of-the-art transformer-based multilingual text embedding (50+ languages).

Deep Text Search - AI Based Text Search & Recommendation System Deep Text Search is an AI-powered multilingual text search and recommendation engine w

19 Sep 29, 2022
code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Shiqi Yang 84 Dec 26, 2022