Sentinel-1 vessel detection model used in the xView3 challenge

Overview

sar_vessel_detect

Code for the AI2 Skylight team's submission in the xView3 competition (https://iuu.xview.us) for vessel detection in Sentinel-1 SAR images. See whitepaper.pdf for a summary of our approach.

Dependencies

Install dependiences using conda:

cd sar_vessel_detect/
conda env create -f environment.yml

Pre-processing

First, ensure that training and validation scenes are extracted to the same directory, e.g. /xview3/all/images/. The training and validation labels should be concatenated and written to a CSV file like /xview3/all/labels.csv.

Prior to training, the large scenes must be split up into 800x800 windows (chips). Set paths and parameters in data/configs/chipping_config.txt, and then run:

cd sar_vessel_detect/src/
python -m xview3.processing.preprocessing ../data/configs/chipping_config.txt

Initial Training

We first train a model on the 50 xView3-Validation scenes only. We will apply this model in the xView3-Train scenes, and incorporate high-confidence predictions as additional labels. This is because xView3-Train scenes are not comprehensively labeled since most labels are derived automatically from AIS tracks.

To train, set paths and parameters in data/configs/initial.txt, and then run:

python -m xview3.training.train ../data/configs/initial.txt

Apply the trained model in xView3-Train, and incorporate high-confidence predictions as additional labels:

python -m xview3.infer.inference --image_folder /xview3/all/images/ --weights ../data/models/initial/best.pth --output out.csv --config_path ../data/configs/initial.txt --padding 400 --window_size 3072 --overlap 20 --scene_path ../data/splits/xview-train.txt
python -m xview3.eval.prune --in_path out.csv --out_path out-conf80.csv --conf 0.8
python -m xview3.misc.pred2label out-conf80.csv /xview3/all/chips/ out-conf80-tolabel.csv
python -m xview3.misc.pred2label_concat /xview3/all/chips/chip_annotations.csv out-conf80-tolabel.csv out-conf80-tolabel-concat.csv
python -m xview3.eval.prune --in_path out-conf80-tolabel-concat.csv --out_path out-conf80-tolabel-concat-prune.csv --nms 10
python -m xview3.misc.pred2label_fixlow out-conf80-tolabel-concat-prune.csv
python -m xview3.misc.pred2label_drop out-conf80-tolabel-concat-prune.csv out.csv out-conf80-tolabel-concat-prune-drop.csv
mv out-conf80-tolabel-concat-prune-drop.csv ../data/xval1b-conf80-concat-prune-drop.csv

Final Training

Now we can train the final object detection model. Set paths and parameters in data/configs/final.txt, and then run:

python -m xview3.training.train ../data/configs/final.txt

Attribute Prediction

We use a separate model to predict is_vessel, is_fishing, and vessel length.

python -m xview3.postprocess.v2.make_csv /xview3/all/chips/chip_annotations.csv out.csv ../data/splits/our-train.txt /xview3/postprocess/labels.csv
python -m xview3.postprocess.v2.get_boxes /xview3/postprocess/labels.csv /xview3/all/chips/ /xview3/postprocess/boxes/
python -m xview3.postprocess.v2.train /xview3/postprocess/model.pth /xview3/postprocess/labels.csv /xview3/postprocess/boxes/

Inference

Suppose that test images are in a directory like /xview3/test/images/. First, apply the object detector:

python -m xview3.infer.inference --image_folder /xview3/test/images/ --weights ../data/models/final/best.pth --output out.csv --config_path ../data/configs/final.txt --padding 400 --window_size 3072 --overlap 20
python -m xview3.eval.prune --in_path out.csv --out_path out-prune.csv --nms 10

Now apply the attribute prediction model:

python -m xview3.postprocess.v2.infer /xview3/postprocess/model.pth out-prune.csv /xview3/test/chips/ out-prune-attribute.csv attribute

Test-time Augmentation

We employ test-time augmentation in our final submission, which we find provides a small 0.5% performance improvement.

python -m xview3.infer.inference --image_folder /xview3/test/images/ --weights ../data/models/final/best.pth --output out-1.csv --config_path ../data/configs/final.txt --padding 400 --window_size 3072 --overlap 20
python -m xview3.infer.inference --image_folder /xview3/test/images/ --weights ../data/models/final/best.pth --output out-2.csv --config_path ../data/configs/final.txt --padding 400 --window_size 3072 --overlap 20 --fliplr True
python -m xview3.infer.inference --image_folder /xview3/test/images/ --weights ../data/models/final/best.pth --output out-3.csv --config_path ../data/configs/final.txt --padding 400 --window_size 3072 --overlap 20 --flipud True
python -m xview3.infer.inference --image_folder /xview3/test/images/ --weights ../data/models/final/best.pth --output out-4.csv --config_path ../data/configs/final.txt --padding 400 --window_size 3072 --overlap 20 --fliplr True --flipud True
python -m xview3.eval.ensemble out-1.csv out-2.csv out-3.csv out-4.csv out-tta.csv
python -m xview3.eval.prune --in_path out-tta.csv --out_path out-tta-prune.csv --nms 10
python -m xview3.postprocess.v2.infer /xview3/postprocess/model.pth out-tta-prune.csv /xview3/test/chips/ out-tta-prune-attribute.csv attribute

Confidence Threshold

We tune the confidence threshold on the validation set. Repeat the inference steps with test-time augmentation on the our-validation.txt split to get out-validation-tta-prune-attribute.csv. Then:

python -m xview3.eval.metric --label_file /xview3/all/chips/chip_annotations.csv --scene_path ../data/splits/our-validation.txt --costly_dist --drop_low_detect --inference_file out-validation-tta-prune-attribute.csv --threshold -1
python -m xview3.eval.prune --in_path out-tta-prune-attribute.csv --out_path submit.csv --conf 0.3 # Change to the best confidence threshold.

Inquiries

For inquiries, please open a Github issue.

Code for the paper "There is no Double-Descent in Random Forests"

Code for the paper "There is no Double-Descent in Random Forests" This repository contains the code to run the experiments for our paper called "There

2 Jan 14, 2022
The source code and dataset for the RecGURU paper (WSDM 2022)

RecGURU About The Project Source code and baselines for the RecGURU paper "RecGURU: Adversarial Learning of Generalized User Representations for Cross

Chenglin Li 17 Jan 07, 2023
PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation

PyGRANSO PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation Please check https://ncvx.org/PyGRANSO for detailed instructions (introd

SUN Group @ UMN 26 Nov 16, 2022
Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples"

KSTER Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples" [paper]. Usage Download the processed datas

jiangqn 23 Nov 24, 2022
This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge.

Data-Science-Intern-Challenge This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge. Summer 2022 Data Science Inte

1 Jan 11, 2022
Simultaneous Detection and Segmentation

Simultaneous Detection and Segmentation This is code for the ECCV Paper: Simultaneous Detection and Segmentation Bharath Hariharan, Pablo Arbelaez,

Bharath Hariharan 96 Jul 20, 2022
simple artificial intelligence utilities

Simple AI Project home: http://github.com/simpleai-team/simpleai This lib implements many of the artificial intelligence algorithms described on the b

921 Dec 08, 2022
Notebooks for my "Deep Learning with TensorFlow 2 and Keras" course

Deep Learning with TensorFlow 2 and Keras – Notebooks This project accompanies my Deep Learning with TensorFlow 2 and Keras trainings. It contains the

Aurélien Geron 1.9k Dec 15, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction The dataset contains 3 million attribute-value annotations across 1257 unique ca

Google Research Datasets 89 Jan 08, 2023
we propose EfficientDerain for high-efficiency single-image deraining

EfficientDerain we propose EfficientDerain for high-efficiency single-image deraining Requirements python 3.6 pytorch 1.6.0 opencv-python 4.4.0.44 sci

Qing Guo 126 Dec 07, 2022
Code for ICLR2018 paper: Improving GAN Training via Binarized Representation Entropy (BRE) Regularization - Y. Cao · W Ding · Y.C. Lui · R. Huang

code for "Improving GAN Training via Binarized Representation Entropy (BRE) Regularization" (ICLR2018 paper) paper: https://arxiv.org/abs/1805.03644 G

21 Oct 12, 2020
git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li Accepted by CVPR

NingWang 236 Dec 22, 2022
Code for ICLR 2020 paper "VL-BERT: Pre-training of Generic Visual-Linguistic Representations".

VL-BERT By Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, Jifeng Dai. This repository is an official implementation of the paper VL-BERT:

Weijie Su 698 Dec 18, 2022
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022
BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构

BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构。 文档地址:https://basecls.readthedocs.io 安装 安装环境 BaseCls 需要 Python = 3.6。 BaseCls 依赖 M

MEGVII Research 28 Dec 23, 2022
AWS documentation corpus for zero-shot open-book question answering.

aws-documentation We present the AWS documentation corpus, an open-book QA dataset, which contains 25,175 documents along with 100 matched questions a

Sia Gholami 2 Jul 07, 2022
A PyTorch implementation of the continual learning experiments with deep neural networks

Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain

182 Dec 27, 2022
Code for NeurIPS 2020 article "Contrastive learning of global and local features for medical image segmentation with limited annotations"

Contrastive learning of global and local features for medical image segmentation with limited annotations The code is for the article "Contrastive lea

Krishna Chaitanya 152 Dec 22, 2022
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
CondenseNet V2: Sparse Feature Reactivation for Deep Networks

CondenseNetV2 This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Y

Haojun Jiang 74 Dec 12, 2022