Simultaneous Detection and Segmentation

Overview

##Simultaneous Detection and Segmentation

This is code for the ECCV Paper:
Simultaneous Detection and Segmentation
Bharath Hariharan, Pablo Arbelaez, Ross Girshick, Jitendra Malik
To appear in ECCV, 2014.

###Installation

  • Installing caffe: The code comes bundled with a version of caffe that we have modified slightly for SDS. (These modifications might be merged into the public caffe version sometime in the future). To install caffe, follow the instructions on the caffe webpage. (You'll have to install some pre-requisites). After installing all prerequisites, cd into extern/caffe and do make caffe.
    After you have made caffe, you will also need to do make matcaffe.

  • Downloading other external dependencies (MCG and liblinear): The extern folder has a script that downloads MCG and liblinear and compiles liblinear. After running the script, cd into extern/MCG-PreTrained and change the path in root_dir.m to the path to the MCG-PreTrained directory.

  • Starting MATLAB: Start MATLAB and call startup_sds from the main SDS directory. This will compile all mexes in MCG and liblinear, and add all paths.

    A few possible issues related to Caffe:

    • You may need to add the path to CUDA libraries (usually in /usr/local/cuda/lib64) to LD_LIBRARY_PATH before starting MATLAB.
    • When running the code, if you get an error saying: /usr/lib/x86_64-linux-gnu/libharfbuzz.so.0: undefined symbol: FT_Face_GetCharVariantIndex, try adding /usr/lib/x86_64-linux-gnu/libfreetype.so.6(or the equivalent library that your system may have) to the LD_PRELOAD environment variable before starting MATLAB.

###Using Pre-computed results To get started you can look at precomputed results. Download the precomputed results from this ftp link: ftp://ftp.cs.berkeley.edu/pub/projects/vision/sds_precomputed_results.tar.gz and untar it. The precomputed results contain results on VOC2012 val images (SDS, detection and segmentation). You can visualize the precomputed results using the function visualize_precomputed_results.m: visualize_precomputed_results('/path/to/precomputed/results', '/path/to/VOC2012/VOCdevkit/VOC2012/JPEGImages', categ_id);
Here categ_id is the number of the category, for example 15 for person.

Note that you do not need to install Caffe or any of the external dependencies above if you want to simply visualize or use precomputed results.

###Testing Pre-trained models

Download the pretrained models from this ftp link: ftp://ftp.cs.berkeley.edu/pub/projects/vision/sds_pretrained_models.tar.gz and untar them in the main SDS directory.

demo_sds.m is a simple demo that uses the precomputed models to show the outputs we get on a single image. It takes no arguments. It runs the trained models on an example image and displays the detections for the person category. This function is a wrapper around the main function, which is called imagelist_to_sds.m.

###Benchmarking and evaluation

You can also run the benchmark demo, demo_sds_benchmark, which tests our pipeline on a small 100 image subset of VOC2012 val and then evaluates for the person category. You can call it as follows:
demo_sds_benchmark('/path/to/VOC2012/VOCdevkit/VOC2012/JPEGImages/', '/path/to/cachedir', '/path/to/SBD');
Here the cachedir is a directory where intermediate results will be stored. The function also requires the SBD (Semantic Boundaries Dataset), which you can get here. The function does the evaluation for both before refinement and after refinement, and reports an APr of 59.9 in the first case and 66.8 in the second case.

The main function for running the benchmark is evaluation/run_benchmark.m. demo_sds_benchmark should point you to how to run the benchmark.

###Evaluating on detection and segmentation

  • Detection: Look at imagelist_to_det.m to see how to produce a bounding box detection output. In summary, after computing scores on all regions, we use misc/box_nms.m to non-max suppress the boxes using box overlap. misc/write_test_boxes then writes the boxes out to a file that you can submit to PASCAL.

  • Semantic segmentation: Look at imagelist_to_seg.m to see how we produce a semantic segmentation output. In summary, after we compute scores on all regions, we do misc/region_nms.m to non-max suppress boxes, and use misc/get_top_regions.m to get the top regions per category. For our experiments, we picked the top 5K regions for seg val and seg test. Then we call paste_segments: [local_ids, labels, scores2] = paste_segments(topchosen, scores, region_meta_info, 2, 10, -1); topchosen is the first output of get_top_regions.m. These parameters above were tuned on seg val 2011. This function will pick out the segments to paste. To do the actual pasting, use create_pasted_segmentations (if you don't want any refinement) or create_pasted_segmentations_refined (if you want refinement). Refinement is a bit slower but works ~1 point better.

###SDS results format If you want to do more with our results, you may want to understand how we represent our results.

  • Representing region candidates: Because we work with close to 2000 region candidates, saving them as full image-sized masks uses up a lot of space and requires a lot of memory to process. Instead, we save these region candidates using a superpixel representation: we save a superpixel map, containing the superpixel id for each pixel in the image, and we represent each region as a binary vector indicating which superpixels are present in the region. To allow this superpixel representation to be accessible to Caffe, we
  • save the superpixel map as a text file, the first two numbers in which represent the size of the image and the rest of the file contains the superpixel ids of the pixels in MATLAB's column-major order (i.e, we first store the superpixel ids of the first column, then the second column and so on).
  • stack the representation of each region as a matrix (each column representing a region) and save it as a png image.

read_sprep can read this representation into matlab.

  • Representing detections: After the regions have been scored and non-max suppressed, we store the chosen regions as a cell array, one cell per category. Each cell is itself a cell array, with as many cells as there are images, and each cell containing the region id of the chosen regions. The scores are stored in a separate cell array.

  • Representing refined detections: After refinement, the refined regions are stored as binary matrices in mat files, one for each image. The refined regions for different categories are stored in different directories

###Retraining region classifiers

To retrain region classifiers, you first need to save features for all regions including ground truth. You can look at the function setup_svm_training.m. This function will save features and return a region_meta_info struct, which has in it the overlaps of all the regions with all the ground truth. The function expects a list of images, a number of paths to save stuff in, and a path to the ground truth (SBD).

Once the features are saved you can use the region_classification/train_svms.m function to train the detectors. You can also train refinement models for each category using refinement/train_refiner.m

###Retraining the network To retrain the network you will have to use caffe. You need two things: a prototxt specifying the architecture, and a window file specifying the data.

  • Window file: Writing the window file requires you to make a choice between using box overlap to define ground truth, or using region overlap to define ground truth. In the former case, use feature_extractor/make_window_file_box.m and in the latter use feature_extractor/make_window_file_box.m. Both functions require as input the image list, region_meta_info (output of preprocessing/preprocess_mcg_candidates; check setup_svm_training to see how to call it), sptextdir, regspimgdir (specifying the superpixels and regions) and the filename in which the output should go.

  • Prototxt: There are 3 prototxts that figure during training. One specifies the solver, and points to the other two: one for training and the other for testing. Training a single pathway network for boxes can be done with the window_train and window_val, a single pathway network on regions can be done using masked_window_train and masked_window_val, and a two pathway network (net C) can be trained using piwindow_train and piwindow_val. (Here "pi" refers to the architecture of the network, which looks like the capital greek pi.) The train and val prototxts also specify which window file to use. The solver prototxt specifies the path to the train and val prototxts. It also specifies where the snapshots are saved. Make sure that path can be saved to.

  • Initialization: A final requirement for finetuning is to have an initial network, and also the imagenet mean. The latter you can get by running extern/caffe/data/ilsvrc12/get_ilsvrc_aux.sh The initial network is the B network for net C. For everything else, it is the caffe reference imagenet model, which you can get by running extern/caffe/examples/imagenet/get_caffe_reference_imagenet_model.sh

  • Finetuning: cd into caffe and use the following command to train the network (replace caffe_reference_imagenet_model by the appropriate initialization):
    GLOG_logtostderr=1 ./build/tools/finetune_net.bin ../prototxts/pascal_finetune_solver.prototxt ./examples/imagenet/caffe_reference_imagenet_model 2>&1 | tee logdir/log.txt
    Finally, extracting features requires a network with the two-pathway architecture. If you trained the box and region pathway separately, you can stitch them together using feature_extractor/combine_box_region_nets.m

Owner
Bharath Hariharan
Bharath Hariharan
Official code for On Path Integration of Grid Cells: Group Representation and Isotropic Scaling (NeurIPS 2021)

On Path Integration of Grid Cells: Group Representation and Isotropic Scaling This repo contains the official implementation for the paper On Path Int

Ruiqi Gao 39 Nov 10, 2022
Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations"

Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations" this repository is maintained by bo

Yuhan Liu 24 Nov 29, 2022
Artificial intelligence technology inferring issues and logically supporting facts from raw text

개요 비정형 텍스트를 학습하여 쟁점별 사실과 논리적 근거 추론이 가능한 인공지능 원천기술 Artificial intelligence techno

6 Dec 29, 2021
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
Official code for Score-Based Generative Modeling through Stochastic Differential Equations

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains the official implementation for the paper Score-Based Gen

Yang Song 818 Jan 06, 2023
This is my codes that can visualize the psnr image in testing videos.

CVPR2018-Baseline-PSNRplot This is my codes that can visualize the psnr image in testing videos. Future Frame Prediction for Anomaly Detection – A New

Wenhao Yang 12 May 29, 2021
Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

This book was written for you: an aspiring data scientist with a quantitative background, facing down the gauntlet of the interview process in an increasingly competitive field. For most of you, the

4.1k Dec 28, 2022
tensorrt int8 量化yolov5 4.0 onnx模型

onnx模型转换为 int8 tensorrt引擎

123 Dec 28, 2022
code for generating data set ES-ImageNet with corresponding training code

es-imagenet-master code for generating data set ES-ImageNet with corresponding training code dataset generator some codes of ODG algorithm The variabl

Ordinarabbit 18 Dec 25, 2022
[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding Official Pytorch implementation of Negative Sample Matter

Multimedia Computing Group, Nanjing University 69 Dec 26, 2022
Controlling Hill Climb Racing with Hand Tacking

Controlling Hill Climb Racing with Hand Tacking Opened Palm for Gas Closed Palm for Brake

Rohit Ingole 3 Jan 18, 2022
Code & Data for Enhancing Photorealism Enhancement

Code & Data for Enhancing Photorealism Enhancement

Intel ISL (Intel Intelligent Systems Lab) 1.1k Jan 08, 2023
Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility ICCV2021

Vis2Mesh This is the offical repository of the paper: Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Lear

71 Dec 25, 2022
DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021)

DeepLM DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021) Run Please install th

Jingwei Huang 130 Dec 02, 2022
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022
On the adaptation of recurrent neural networks for system identification

On the adaptation of recurrent neural networks for system identification This repository contains the Python code to reproduce the results of the pape

Marco Forgione 3 Jan 13, 2022
Code for "Retrieving Black-box Optimal Images from External Databases" (WSDM 2022)

Retrieving Black-box Optimal Images from External Databases (WSDM 2022) We propose how a user retreives an optimal image from external databases of we

joisino 5 Apr 13, 2022
Weakly-supervised object detection.

Wetectron Wetectron is a software system that implements state-of-the-art weakly-supervised object detection algorithms. Project CVPR'20, ECCV'20 | Pa

NVIDIA Research Projects 342 Jan 05, 2023
Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Hah Min Lew 1 Feb 08, 2022
Pytorch implementation of "MOSNet: Deep Learning based Objective Assessment for Voice Conversion"

MOSNet pytorch implementation of "MOSNet: Deep Learning based Objective Assessment for Voice Conversion" https://arxiv.org/abs/1904.08352 Dependency L

9 Nov 18, 2022