ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021)

Overview

ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021)

Project Page | Video | Paper | Data

We present a novel method for multi-view depth estimation from a single video, which is a critical task in various applications, such as perception, reconstruction and robot navigation. Although previous learning-based methods have demonstrated compelling results, most works estimate depth maps of individual video frames independently, without taking into consideration the strong geometric and temporal coherence among the frames. Moreover, current state-of-the-art (SOTA) models mostly adopt a fully 3D convolution network for cost regularization and therefore require high computational cost, thus limiting their deployment in real-world applications. Our method achieves temporally coherent depth estimation results by using a novel Epipolar Spatio-Temporal (EST) transformer to explicitly associate geometric and temporal correlation with multiple estimated depth maps. Furthermore, to reduce the computational cost, inspired by recent Mixture-of-Experts models, we design a compact hybrid network consisting of a 2D context-aware network and a 3D matching network which learn 2D context information and 3D disparity cues separately.

Here is the official repo for the paper:

Table of contents



Requirements and Installation

This code is implemented in PyTorch.

The code has been tested on the following system:

To install, first clone this repo and install all dependencies:

conda env create -f environment.yml

Option: install apex to enable synchronized batch normalization

git clone https://github.com/NVIDIA/apex.git
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Dataset

Please also cite the original papers if you use any of them in your work.

Dataset Notes on Dataset Split
ScanNet see ./data/scannet_split/
7scenes see ./data/7scenes/test.txt

Train a new model

In the training stage, our model takes a sequence of 5 frames as input, with a batch size of 4 sequences on 4 GPUs. We use the following code to train a model:

python -m torch.distributed.launch --nproc_per_node=4 train_hybrid.py  --using_apex  --sync_bn \
--datapath /userhome/35/xxlong/dataset/scannet_whole/  \
--testdatapath /userhome/35/xxlong/dataset/scannet_test/ \
--reloadscan True \
--batch_size 1 --seq_len 5 --mode train --summary_freq 10 \
--epochs 7 --lr 0.00004 --lrepochs 2,4,6,8:2 \
--logdir ./logs/hybrid_res50_ndepths64 \
--resnet 50 --ndepths 64 --IF_EST_transformer False \
--depth_min 0.1 --depth_max 10. |  tee -a ./logs/hybrid_res50_ndepths64/log.txt
bash train_hybrid.sh

Evaluation

Once the model is trained, the following command is used to evaluate test images given the trained_model.

Our model has two testing modes: Joint and ESTM

For Joint mode, run:

bash eval_hybrid.sh

For ESTM mode, run:

bash eval_hybrid_seq.sh

License

ESTDepth is MIT-licensed. The license applies to the pre-trained models as well.

Citation

Please cite as

@InProceedings{Long_2021_CVPR,
    author    = {Long, Xiaoxiao and Liu, Lingjie and Li, Wei and Theobalt, Christian and Wang, Wenping},
    title     = {Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {8258-8267}
Owner
Xiaoxiao Long Ph.D. student in HKU
Complete* list of autonomous driving related datasets

AD Datasets Complete* and curated list of autonomous driving related datasets Contributing Contributions are very welcome! To add or update a dataset:

Daniel Bogdoll 13 Dec 19, 2022
Machine Learning with JAX Tutorials

The purpose of this repo is to make it easy to get started with JAX. It contains my "Machine Learning with JAX" series of tutorials (YouTube videos and Jupyter Notebooks) as well as the content I fou

Aleksa Gordić 372 Dec 28, 2022
[NeurIPS'21 Spotlight] PyTorch code for our paper "Aligned Structured Sparsity Learning for Efficient Image Super-Resolution"

ASSL This repository is for a new network pruning method (Aligned Structured Sparsity Learning, ASSL) for efficient single image super-resolution (SR)

Huan Wang 47 Nov 28, 2022
Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch

CoCa - Pytorch Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch. They were able to elegantly fit in contras

Phil Wang 565 Dec 30, 2022
Invert and perturb GAN images for test-time ensembling

GAN Ensembling Project Page | Paper | Bibtex Ensembling with Deep Generative Views. Lucy Chai, Jun-Yan Zhu, Eli Shechtman, Phillip Isola, Richard Zhan

Lucy Chai 93 Dec 08, 2022
Understanding the Generalization Benefit of Model Invariance from a Data Perspective

Understanding the Generalization Benefit of Model Invariance from a Data Perspective This is the code for our NeurIPS2021 paper "Understanding the Gen

1 Jan 15, 2022
InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

Deep Insight 13.2k Jan 06, 2023
Code for BMVC2021 paper "Boundary Guided Context Aggregation for Semantic Segmentation"

Boundary-Guided-Context-Aggregation Boundary Guided Context Aggregation for Semantic Segmentation Haoxiang Ma, Hongyu Yang, Di Huang In BMVC'2021 Pape

Haoxiang Ma 31 Jan 08, 2023
This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool

OpenSurfaces Segmentation UI This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool.

Sean Bell 66 Jul 11, 2022
A TensorFlow Implementation of "Deep Multi-Scale Video Prediction Beyond Mean Square Error" by Mathieu, Couprie & LeCun.

Adversarial Video Generation This project implements a generative adversarial network to predict future frames of video, as detailed in "Deep Multi-Sc

Matt Cooper 704 Nov 26, 2022
Code for paper "Multi-level Disentanglement Graph Neural Network"

Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:

Lirong Wu 6 Dec 29, 2022
A super lightweight Lagrangian model for calculating millions of trajectories using ERA5 data

Easy-ERA5-Trck Easy-ERA5-Trck Galleries Install Usage Repository Structure Module Files Version iteration Easy-ERA5-Trck is a super lightweight Lagran

Zhenning Li 26 Nov 19, 2022
Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

Ursa Zrimsek 2 Dec 14, 2022
HyperDict - Self linked dictionary in Python

Hyper Dictionary Advanced python dictionary(hash-table), which can link it-self

8 Feb 06, 2022
[NeurIPS 2021] Code for Unsupervised Learning of Compositional Energy Concepts

Unsupervised Learning of Compositional Energy Concepts This is the pytorch code for the paper Unsupervised Learning of Compositional Energy Concepts.

45 Nov 30, 2022
Taming Transformers for High-Resolution Image Synthesis

Taming Transformers for High-Resolution Image Synthesis CVPR 2021 (Oral) Taming Transformers for High-Resolution Image Synthesis Patrick Esser*, Robin

CompVis Heidelberg 3.5k Jan 03, 2023
Deep Anomaly Detection with Outlier Exposure (ICLR 2019)

Outlier Exposure This repository contains the essential code for the paper Deep Anomaly Detection with Outlier Exposure (ICLR 2019). Requires Python 3

Dan Hendrycks 464 Dec 27, 2022
ONNX Command-Line Toolbox

ONNX Command Line Toolbox Aims to improve your experience of investigating ONNX models. Use it like onnx infershape /path/to/model.onnx. (See the usag

黎明灰烬 (王振华 Zhenhua WANG) 23 Nov 13, 2022
x-transformers-paddle 2.x version

x-transformers-paddle x-transformers-paddle 2.x version paddle 2.x版本 https://github.com/lucidrains/x-transformers 。 requirements paddlepaddle-gpu==2.2

yujun 7 Dec 08, 2022