The project was to detect traffic signs, based on the Megengine framework.

Overview

trafficsign

赛题

旷视AI智慧交通开源赛道,初赛1/177,复赛1/12。
本赛题为复杂场景的交通标志检测,对五种交通标志进行识别。

框架

megengine

算法方案

  • 网络框架

    • atss + resnext101_32x8d
  • 训练阶段

    • 图片尺寸
      最终提交版本输入图片尺寸为(1500,2100)

    • 多尺度训练(最终提交版本未采用)
      起初我们将短边设为(1024, 1056, 1088, 1120, 1152, 1184, 1216, 1248, 1280, 1312, 1344, 1376, 1408),随机选取短边后,长边按比例缩放,并使长边长度小于1800,从而进行多尺度训练,取得了很好的效果。 不过后期的mosaic和mixup在增强时对图片进行了缩放,实则隐含了多尺度训练,且效果优于上述方法,所以我们最终去掉了多尺度训练。

    • 数据增强

      • mosaic增强

        随机选择四张图片,对图片进行随机平移10%,尺度缩放(0.5,2.0),shear 0.1,最后将四张图片进行组合。

      • mixup增强

        随机选取两张图进行叠加,我们最终选用的比例是0.5 * 原图+0.5 * 新图片,同时其进行缩放(0.5,2.0)。

        下图为mosaic+mixup示例图:

        mosaic+mixup

      • 随机水平翻转

        直接对图片进行翻转,会导致第三个类别“arr_l”(左转线)和右转线混淆,故我们添加了class-aware的翻转,遇到有“arr_l”类的图片则不进行翻转。

      • 基于Albumentations库的各种增强(最终提交版本未采用)

        我们尝试了ShiftScaleRotate(验证集+0.5)、CLANE(验证集+1.0)、RandomBrightnessContrast等,但组合起来测试集提点欠佳,所以最后没用。

      • gridmask增强(最终提交版本未采用)

        生成一个和原图相同分辨率的mask(每个grid上全为0或全为1),然后将该mask与原图相乘得到一个图像。提点欠佳,所以没采用。

      • 类别平衡采样(最终提交版本未采用)

        使用类别平衡采样后,效果不是很好,这可能是因为数据集本身没有严重的类别不均衡。下面是我们统计的每个类别在图片中出现的频率。

        红灯 直行线 左转线 禁止行驶 禁止停车
        频率 0.356 0.228 0.201 0.257 0.485
  • 多尺度测试

    • 多尺度测试图片尺寸

      最后提交版本(2100,2700),(2100,2800),(2400,3200),如果继续增加尺度,map还会继续提高。

    • topk—nms

      对上述三个尺度生成的结果先进行nms,再将得到的结果框与剩下所有框进行topk—nms(保留与当前结果框iou大于0.85的topk的框,把这些框的坐标进行融合),参数设置vote_thresh=0.85, k=5。

  • 网络结构

    • 加上增强后,backbone从res50到res101再到resx101有稳定涨点。

    • 我们还在backbone部分尝试了dcn和gcnet,验证集收效甚微,最终没有采用。

模型训练与测试

  • 数据集位置
/path/to/ 
    |->traffic   
    |    |images     
    |    |annotations->|train.json     
    |    |             |val.json     
    |    |             |test.json      
  • 训练测试

在加上增强后,我们训练了36个epoch。

pip3 install --user -r requirements.txt

export PYTHONPATH=your_path/trafficsign:$PYTHONPATH

cd weights && wget https://data.megengine.org.cn/models/weights/atss_resx101_coco_2x_800size_45dot6_b3a91b36.pkl

python3 tools/train.py -n 4 -b 2 -f configs/atss_resx101_final.py -d your_datasetpath -w weights/atss_resx101_coco_2x_800size_45dot6_b3a91b36.pkl

python3 tools/test_final.py -n 4 -se 35 -f configs/atss_resx101_final.py -d your_datasetpath 

(-n 能抢到几张卡就写几吧qaq)

备注

以上提到的所有方法,无论最终是否采用,代码中均有实现。

感谢

https://github.com/MegEngine/Models/tree/master/official/vision/detection

https://github.com/MegEngine/YOLOX

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation. Generally, MAS methods register multiple atlases, i.e., medical images with corresponding labels, to a target i

NanYoMy 13 Oct 09, 2022
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),

Deep Learning for HEP 57 Oct 22, 2022
PyTorch version implementation of DORN

DORN_PyTorch This is a PyTorch version implementation of DORN Reference H. Fu, M. Gong, C. Wang, K. Batmanghelich and D. Tao: Deep Ordinal Regression

Zilin.Zhang 3 Apr 27, 2022
Official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th ICML Workshop on AutoML)

Automated Learning Rate Scheduler for Large-Batch Training The official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th

Kakao Brain 35 Jan 04, 2023
Single Image Deraining Using Bilateral Recurrent Network (TIP 2020)

Single Image Deraining Using Bilateral Recurrent Network Introduction Single image deraining has received considerable progress based on deep convolut

23 Aug 10, 2022
Source code for From Stars to Subgraphs

GNNAsKernel Official code for From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness Visualizations GNN-AK(+) GNN-AK(+) with Subgra

44 Dec 19, 2022
Build Graph Nets in Tensorflow

Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact DeepMind 5.2k Jan 05, 2023

통일된 DataScience 폴더 구조 제공 및 가상환경 작업의 부담감 해소

Lucas coded by linux shell 목차 Mac버전 CookieCutter (autoenv) 1.How to Install autoenv 2.폴더 진입 시, activate 구현하기 3.폴더 탈출 시, deactivate 구현하기 4.Alias 설정하기 5

ello 3 Feb 21, 2022
A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''.

P-tuning A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''. How to use our code We have released the code

THUDM 562 Dec 27, 2022
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2021/11/19 Thank you for your interest in our work. We have uploaded the code of our MTUNet to help peers conduct further research on i

dotman 92 Dec 25, 2022
Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

2 Dec 28, 2021
A python implementation of Physics-informed Spline Learning for nonlinear dynamics discovery

PiSL A python implementation of Physics-informed Spline Learning for nonlinear dynamics discovery. Sun, F., Liu, Y. and Sun, H., 2021. Physics-informe

Fangzheng (Andy) Sun 8 Jul 13, 2022
Video-Music Transformer

VMT Video-Music Transformer (VMT) is an attention-based multi-modal model, which generates piano music for a given video. Paper https://arxiv.org/abs/

Chin-Tung Lin 5 Jul 13, 2022
Modular Probabilistic Programming on MXNet

MXFusion | | | | Tutorials | Documentation | Contribution Guide MXFusion is a modular deep probabilistic programming library. With MXFusion Modules yo

Amazon 100 Dec 10, 2022
Code I use to automatically update my videos' metadata on YouTube

mCodingYouTube This repository contains the code I use to automatically update my videos' metadata on YouTube, including: titles, descriptions, tags,

James Murphy 19 Oct 07, 2022
Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19

2s-AGCN Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19 Note PyTorch version should be 0.3! For PyTor

LShi 547 Dec 26, 2022
TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)

SLM: Structural Language Models of Code This is an official implementation of the model described in: "Structural Language Models of Code" [PDF] To ap

73 Nov 06, 2022
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
Source code for GNN-LSPE (Graph Neural Networks with Learnable Structural and Positional Representations)

Graph Neural Networks with Learnable Structural and Positional Representations Source code for the paper "Graph Neural Networks with Learnable Structu

Vijay Prakash Dwivedi 180 Dec 22, 2022
Code to compute permutation and drop-column importances in Python scikit-learn models

Feature importances for scikit-learn machine learning models By Terence Parr and Kerem Turgutlu. See Explained.ai for more stuff. The scikit-learn Ran

Terence Parr 537 Dec 31, 2022