Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

Related tags

Deep Learningnelf
Overview

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting

Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

Tiancheng Sun1*, Kai-En Lin1*, Sai Bi2, Zexiang Xu2, Ravi Ramamoorthi1

1University of California, San Diego, 2Adobe Research

*Equal contribution

Project Page | Paper | Pretrained models | Validation data | Rendering script

Requirements

Install required packages

Make sure you have up-to-date NVIDIA drivers supporting CUDA 11.1 (10.2 could work but need to change cudatoolkit package accordingly)

Run

conda env create -f environment.yml
conda activate pixelnerf

The following packages are used:

  • PyTorch (1.7 & 1.9.0 Tested)

  • OpenCV-Python

  • matplotlib

  • numpy

  • tqdm

OS system: Ubuntu 20.04

Download CelebAMask-HQ dataset link

  1. Download the dataset

  2. Remove background with the provided masks in the dataset

  3. Downsample the dataset to 512x512

  4. Store the resulting data in [path_to_data_directory]/CelebAMask

    Following this data structure

    [path_to_data_directory] --- data --- CelebAMask --- 0.jpg
                                       |              |- 1.jpg
                                       |              |- 2.jpg
                                       |              ...
                                       |- blender_both --- sub001
                                       |                |- sub002
                                       |                ...
    
    

(Optional) Download and render FaceScape dataset link

Due to FaceScape's license, we cannot release the full dataset. Instead, we will release our rendering script.

  1. Download the dataset

  2. Install Blender link

  3. Run rendering script link

Usage

Testing

  1. Download our pretrained checkpoint and testing data. Extract the content to [path_to_data_directory]. The data structure should look like this:

    [path_to_data_directory] --- data --- CelebAMask
                              |        |- blender_both
                              |        |- blender_view
                              |        ...
                              |- data_results --- nelf_ft
                              |- data_test --- validate_0
                                            |- validate_1
                                            |- validate_2
    
  2. In arg/__init__.py, setup data path by changing base_path

  3. Run python run_test.py nelf_ft [validation_data_name] [#iteration_for_the_model]

    e.g. python run_test.py nelf_ft validate_0 500000

  4. The results are stored in [path_to_data_directory]/data_test/[validation_data_name]/results

Training

Due to FaceScape's license, we are not allowed to release the full dataset. We will use validation data to run the following example.

  1. Download our validation data. Extract the content to [path_to_data_directory]. The data structure should look like this:

    [path_to_data_directory] --- data --- CelebAMask
                              |        |- blender_both
                              |        |- blender_view
                              |        ...
                              |- data_results --- nelf_ft
                              |- data_test --- validate_0
                                            |- validate_1
                                            |- validate_2
    

    (Optional) Run rendering script and render your own data.

    Remember to change line 35~42 and line 45, 46 in arg/config_nelf_ft.py accordingly.

  2. In arg/__init__.py, setup data path by changing base_path

  3. Run python run_train.py nelf_ft

  4. The intermediate results and model checkpoints are saved in [path_to_data_directory]/data_results/nelf_ft

Configs

The following config files can be found inside arg folder

Citation

@inproceedings {sun2021nelf,
    booktitle = {Eurographics Symposium on Rendering},
    title = {NeLF: Neural Light-transport Field for Portrait View Synthesis and Relighting},
    author = {Sun, Tiancheng and Lin, Kai-En and Bi, Sai and Xu, Zexiang and Ramamoorthi, Ravi},
    year = {2021},
}
Owner
Ken Lin
Ken Lin
Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems.

CottonWeeds Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems. requirements pytorch torchsumma

Dong Chen 8 Jun 07, 2022
STARCH compuets regional extreme storm physical characteristics and moisture balance based on spatiotemporal precipitation data from reanalysis or climate model data.

STARCH (Storm Tracking And Regional CHaracterization) STARCH computes regional extreme storm physical and moisture balance characteristics based on sp

Onosama 7 Oct 20, 2022
A PyTorch implementation of deep-learning-based registration

DiffuseMorph Implementation A PyTorch implementation of deep-learning-based registration. Requirements OS : Ubuntu / Windows Python 3.6 PyTorch 1.4.0

24 Jan 03, 2023
Masked regression code - Masked Regression

Masked Regression MR - Python Implementation This repositery provides a python implementation of MR (Masked Regression). MR can efficiently synthesize

Arbish Akram 1 Dec 23, 2021
This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

hzwer 190 Jan 08, 2023
Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

NeuLab 40 Dec 23, 2022
thundernet ncnn

MMDetection_Lite 基于mmdetection 实现一些轻量级检测模型,安装方式和mmdeteciton相同 voc0712 voc 0712训练 voc2007测试 coco预训练 thundernet_voc_shufflenetv2_1.5 input shape mAP 320

DayBreak 39 Dec 05, 2022
Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral) This is the official implementat

Yifan Zhang 259 Dec 25, 2022
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
RLMeta is a light-weight flexible framework for Distributed Reinforcement Learning Research.

RLMeta rlmeta - a flexible lightweight research framework for Distributed Reinforcement Learning based on PyTorch and moolib Installation To build fro

Meta Research 281 Dec 22, 2022
It's a implement of this paper:Relation extraction via Multi-Level attention CNNs

Relation Classification via Multi-Level Attention CNNs It's a implement of this paper:Relation Classification via Multi-Level Attention CNNs. Training

Aybss 2 Nov 04, 2022
Replication package for the manuscript "Using Personality Detection Tools for Software Engineering Research: How Far Can We Go?" submitted to TOSEM

tosem2021-personality-rep-package Replication package for the manuscript "Using Personality Detection Tools for Software Engineering Research: How Far

Collaborative Development Group 1 Dec 13, 2021
Pytorch implementation of PCT: Point Cloud Transformer

PCT: Point Cloud Transformer This is a Pytorch implementation of PCT: Point Cloud Transformer.

Yi_Zhang 265 Dec 22, 2022
A Kernel fuzzer focusing on race bugs

Razzer: Finding kernel race bugs through fuzzing Environment setup $ source scripts/envsetup.sh scripts/envsetup.sh sets up necessary environment var

Systems and Software Security Lab at Seoul National University (SNU) 328 Dec 26, 2022
Code to generate datasets used in "How Useful is Self-Supervised Pretraining for Visual Tasks?"

Synthetic dataset rendering Framework for producing the synthetic datasets used in: How Useful is Self-Supervised Pretraining for Visual Tasks? Alejan

Princeton Vision & Learning Lab 21 Apr 29, 2022
Submanifold sparse convolutional networks

Submanifold Sparse Convolutional Networks This is the PyTorch library for training Submanifold Sparse Convolutional Networks. Spatial sparsity This li

Facebook Research 1.8k Jan 06, 2023
[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie

58 Dec 23, 2022
Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples / ICLR 2018

Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples This project is for the paper "Training Confidence-Calibrated Clas

168 Nov 29, 2022
DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predicate.

DeepProbLog DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predic

KU Leuven Machine Learning Research Group 94 Dec 18, 2022
Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Ceph.

Project Aquarium Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Cep

Aquarist Labs 73 Jul 21, 2022