Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

Related tags

Deep Learningnelf
Overview

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting

Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

Tiancheng Sun1*, Kai-En Lin1*, Sai Bi2, Zexiang Xu2, Ravi Ramamoorthi1

1University of California, San Diego, 2Adobe Research

*Equal contribution

Project Page | Paper | Pretrained models | Validation data | Rendering script

Requirements

Install required packages

Make sure you have up-to-date NVIDIA drivers supporting CUDA 11.1 (10.2 could work but need to change cudatoolkit package accordingly)

Run

conda env create -f environment.yml
conda activate pixelnerf

The following packages are used:

  • PyTorch (1.7 & 1.9.0 Tested)

  • OpenCV-Python

  • matplotlib

  • numpy

  • tqdm

OS system: Ubuntu 20.04

Download CelebAMask-HQ dataset link

  1. Download the dataset

  2. Remove background with the provided masks in the dataset

  3. Downsample the dataset to 512x512

  4. Store the resulting data in [path_to_data_directory]/CelebAMask

    Following this data structure

    [path_to_data_directory] --- data --- CelebAMask --- 0.jpg
                                       |              |- 1.jpg
                                       |              |- 2.jpg
                                       |              ...
                                       |- blender_both --- sub001
                                       |                |- sub002
                                       |                ...
    
    

(Optional) Download and render FaceScape dataset link

Due to FaceScape's license, we cannot release the full dataset. Instead, we will release our rendering script.

  1. Download the dataset

  2. Install Blender link

  3. Run rendering script link

Usage

Testing

  1. Download our pretrained checkpoint and testing data. Extract the content to [path_to_data_directory]. The data structure should look like this:

    [path_to_data_directory] --- data --- CelebAMask
                              |        |- blender_both
                              |        |- blender_view
                              |        ...
                              |- data_results --- nelf_ft
                              |- data_test --- validate_0
                                            |- validate_1
                                            |- validate_2
    
  2. In arg/__init__.py, setup data path by changing base_path

  3. Run python run_test.py nelf_ft [validation_data_name] [#iteration_for_the_model]

    e.g. python run_test.py nelf_ft validate_0 500000

  4. The results are stored in [path_to_data_directory]/data_test/[validation_data_name]/results

Training

Due to FaceScape's license, we are not allowed to release the full dataset. We will use validation data to run the following example.

  1. Download our validation data. Extract the content to [path_to_data_directory]. The data structure should look like this:

    [path_to_data_directory] --- data --- CelebAMask
                              |        |- blender_both
                              |        |- blender_view
                              |        ...
                              |- data_results --- nelf_ft
                              |- data_test --- validate_0
                                            |- validate_1
                                            |- validate_2
    

    (Optional) Run rendering script and render your own data.

    Remember to change line 35~42 and line 45, 46 in arg/config_nelf_ft.py accordingly.

  2. In arg/__init__.py, setup data path by changing base_path

  3. Run python run_train.py nelf_ft

  4. The intermediate results and model checkpoints are saved in [path_to_data_directory]/data_results/nelf_ft

Configs

The following config files can be found inside arg folder

Citation

@inproceedings {sun2021nelf,
    booktitle = {Eurographics Symposium on Rendering},
    title = {NeLF: Neural Light-transport Field for Portrait View Synthesis and Relighting},
    author = {Sun, Tiancheng and Lin, Kai-En and Bi, Sai and Xu, Zexiang and Ramamoorthi, Ravi},
    year = {2021},
}
Owner
Ken Lin
Ken Lin
An open-source online reverse dictionary.

An open-source online reverse dictionary.

THUNLP 6.3k Jan 09, 2023
Code and training data for our ECCV 2016 paper on Unsupervised Learning

Shuffle and Learn (Shuffle Tuple) Created by Ishan Misra Based on the ECCV 2016 Paper - "Shuffle and Learn: Unsupervised Learning using Temporal Order

Ishan Misra 44 Dec 08, 2021
Implementation of "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement" by pytorch

This repository is used to suspend the results of our paper "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement"

ScorpioMiku 19 Sep 30, 2022
Spectralformer: Rethinking hyperspectral image classification with transformers

The code in this toolbox implements the "Spectralformer: Rethinking hyperspectral image classification with transformers". More specifically, it is detailed as follow.

Danfeng Hong 104 Jan 04, 2023
dualPC.R contains the R code for the main functions.

dualPC.R contains the R code for the main functions. dualPC_sim.R contains an example run with the different PC versions; it calls dualPC_algs.R whic

3 May 30, 2022
Bayesian Optimization using GPflow

Note: This package is for use with GPFlow 1. For Bayesian optimization using GPFlow 2 please see Trieste, a joint effort with Secondmind. GPflowOpt GP

GPflow 257 Dec 26, 2022
A proof of concept ai-powered Recaptcha v2 solver

Recaptcha Fullauto I've decided to open source my old Recaptcha v2 solver. My latest version will be opened sourced this summer. I am hoping this proj

Nate 60 Dec 20, 2022
Tensorflow implementation of DeepLabv2

TF-deeplab This is a Tensorflow implementation of DeepLab, compatible with Tensorflow 1.2.1. Currently it supports both training and testing the ResNe

Chenxi Liu 21 Sep 27, 2022
Neural Module Network for VQA in Pytorch

Neural Module Network (NMN) for VQA in Pytorch Note: This is NOT an official repository for Neural Module Networks. NMN is a network that is assembled

Harsh Trivedi 111 Nov 24, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

AugMax: Adversarial Composition of Random Augmentations for Robust Training Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Anima Anandkumar, an

VITA 112 Nov 07, 2022
Code for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"

Triple-cooperative Video Shadow Detection Code and dataset for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"[arXiv link] [official l

Zhihao Chen 24 Oct 04, 2022
[ECCV'20] Convolutional Occupancy Networks

Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page | Blog Post This repository contains the implementation o

622 Dec 30, 2022
Trading Gym is an open source project for the development of reinforcement learning algorithms in the context of trading.

Trading Gym Trading Gym is an open-source project for the development of reinforcement learning algorithms in the context of trading. It is currently

Dimitry Foures 535 Nov 15, 2022
Matching python environment code for Lux AI 2021 Kaggle competition, and a gym interface for RL models.

Lux AI 2021 python game engine and gym This is a replica of the Lux AI 2021 game ported directly over to python. It also sets up a classic Reinforceme

Geoff McDonald 74 Nov 03, 2022
Pytorch implementation of Masked Auto-Encoder

Masked Auto-Encoder (MAE) Pytorch implementation of Masked Auto-Encoder: Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick

Jiyuan 22 Dec 13, 2022
Tensorflow implementation of "Learning Deconvolution Network for Semantic Segmentation"

Tensorflow implementation of Learning Deconvolution Network for Semantic Segmentation. Install Instructions Works with tensorflow 1.11.0 and uses the

Fabian Bormann 224 Apr 15, 2022
Deep learning for Engineers - Physics Informed Deep Learning

SciANN: Neural Networks for Scientific Computations SciANN is a Keras wrapper for scientific computations and physics-informed deep learning. New to S

SciANN 195 Jan 03, 2023
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning"

PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning".

Berivan Isik 8 Dec 08, 2022
[ICML'21] Estimate the accuracy of the classifier in various environments through self-supervision

What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments? [Paper] [ICML'21 Project] PyTorch Implementation T

24 Oct 26, 2022