Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Overview

Learning Structural Edits via Incremental Tree Transformations

Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

1. Prepare Environment

We recommend using conda to manage the environment:

conda env create -n "structural_edits" -f structural_edits.yml
conda activate structural_edits

Install the punkt tokenizer:

python
>>> import nltk
>>> nltk.download('punkt')
>>> <ctrl-D>

2. Data

Please extract the datasets and vocabulary files by:

cd source_data
tar -xzvf githubedits.tar.gz

All necessary source data has been included as the following:

| --source_data
|       |-- githubedits
|           |-- githubedits.{train|train_20p|dev|test}.jsonl
|           |-- csharp_fixers.jsonl
|           |-- vocab.from_repo.{080910.freq10|edit}.json
|           |-- Syntax.xml
|           |-- configs
|               |-- ...(model config json files)

A sample file containing 20% of the GitHubEdits training data is included as source_data/githubedits/githubedits.train_20p.jsonl for running small experiments.

We have generated and included the vocabulary files as well. To create your own vocabulary, see edit_components/vocab.py.

Copyright: The original data were downloaded from Yin et al., (2019).

3. Experiments

See training and test scripts in scripts/githubedits/. Please configure the PYTHONPATH environment variable in line 6.

3.1 Training

For training, uncomment the desired setting in scripts/githubedits/train.sh and run:

bash scripts/githubedits/train.sh source_data/githubedits/configs/CONFIGURATION_FILE

where CONFIGURATION_FILE is the json file of your setting.

Supervised Learning

For example, if you want to train Graph2Edit + Sequence Edit Encoder on GitHubEdits's 20% sample data, please uncomment only line 21-25 in scripts/githubedits/train.sh and run:

bash scripts/githubedits/train.sh source_data/githubedits/configs/graph2iteredit.seq_edit_encoder.20p.json

(Note: when you run the experiment for the first time, you might need to wait for ~15 minutes for data preprocessing.)

Imitation Learning

To further train the model with PostRefine imitation learning, please replace FOLDER_OF_SUPERVISED_PRETRAINED_MODEL with your model dir in source_data/githubedits/configs/graph2iteredit.seq_edit_encoder.20p.postrefine.imitation.json. Uncomment only line 27-31 in scripts/githubedits/train.sh and run:

bash scripts/githubedits/train.sh source_data/githubedits/configs/graph2iteredit.seq_edit_encoder.20p.postrefine.imitation.json

3.2 Test

To test a trained model, first uncomment only the desired setting in scripts/githubedits/test.sh and replace work_dir with your model directory, and then run:

bash scripts/githubedits/test.sh

4. Reference

If you use our code and data, please cite our paper:

@inproceedings{yao2021learning,
    title={Learning Structural Edits via Incremental Tree Transformations},
    author={Ziyu Yao and Frank F. Xu and Pengcheng Yin and Huan Sun and Graham Neubig},
    booktitle={International Conference on Learning Representations},
    year={2021},
    url={https://openreview.net/forum?id=v9hAX77--cZ}
}

Our implementation is adapted from TranX and Graph2Tree. We are grateful to the two work!

@inproceedings{yin18emnlpdemo,
    title = {{TRANX}: A Transition-based Neural Abstract Syntax Parser for Semantic Parsing and Code Generation},
    author = {Pengcheng Yin and Graham Neubig},
    booktitle = {Conference on Empirical Methods in Natural Language Processing (EMNLP) Demo Track},
    year = {2018}
}
@inproceedings{yin2018learning,
    title={Learning to Represent Edits},
    author={Pengcheng Yin and Graham Neubig and Miltiadis Allamanis and Marc Brockschmidt and Alexander L. Gaunt},
    booktitle={International Conference on Learning Representations},
    year={2019},
    url={https://openreview.net/forum?id=BJl6AjC5F7},
}
Owner
NeuLab
Graham Neubig's Lab at LTI/CMU
NeuLab
ElasticFace: Elastic Margin Loss for Deep Face Recognition

This is the official repository of the paper: ElasticFace: Elastic Margin Loss for Deep Face Recognition Paper on arxiv: arxiv Model Log file Pretrain

Fadi Boutros 113 Dec 14, 2022
Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Phil Wang 383 Jan 02, 2023
Fewshot-face-translation-GAN - Generative adversarial networks integrating modules from FUNIT and SPADE for face-swapping.

Few-shot face translation A GAN based approach for one model to swap them all. The table below shows our priliminary face-swapping results requiring o

768 Dec 24, 2022
Random Forests for Regression with Missing Entries

Random Forests for Regression with Missing Entries These are specific codes used in the article: On the Consistency of a Random Forest Algorithm in th

Irving Gómez-Méndez 1 Nov 15, 2021
This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems

Stability Audit This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems, Humantic

Data, Responsibly 4 Oct 27, 2022
TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)

SLM: Structural Language Models of Code This is an official implementation of the model described in: "Structural Language Models of Code" [PDF] To ap

73 Nov 06, 2022
Official code for "Mean Shift for Self-Supervised Learning"

MSF Official code for "Mean Shift for Self-Supervised Learning" Requirements Python = 3.7.6 PyTorch = 1.4 torchvision = 0.5.0 faiss-gpu = 1.6.1 In

UMBC Vision 44 Nov 21, 2022
AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614

AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614 AquaTimer is a programmable timer for 12V devices such as lighting, solenoid

Stefan Wagner 4 Jun 13, 2022
Lucid Sonic Dreams syncs GAN-generated visuals to music.

Lucid Sonic Dreams Lucid Sonic Dreams syncs GAN-generated visuals to music. By default, it uses NVLabs StyleGAN2, with pre-trained models lifted from

731 Jan 02, 2023
Patches desktop steam to look like the new steamdeck ui.

steam_deck_ui_patch The Deck UI patch will patch the regular desktop steam to look like the brand new SteamDeck UI. This patch tool currently works on

The_IT_Dude 3 Aug 29, 2022
Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

104 Dec 15, 2022
Tool for live presentations using manim

manim-presentation Tool for live presentations using manim Install pip install manim-presentation opencv-python Usage Use the class Slide as your sce

Federico Galatolo 146 Jan 06, 2023
MicRank is a Learning to Rank neural channel selection framework where a DNN is trained to rank microphone channels.

MicRank: Learning to Rank Microphones for Distant Speech Recognition Application Scenario Many applications nowadays envision the presence of multiple

Samuele Cornell 20 Nov 10, 2022
PyTorch implementation for NED. It can be used to manipulate the facial emotions of actors in videos based on emotion labels or reference styles.

Neural Emotion Director (NED) - Official Pytorch Implementation Example video of facial emotion manipulation while retaining the original mouth motion

Foivos Paraperas 89 Dec 23, 2022
🛠️ Tools for Transformers compression using Lightning ⚡

Bert-squeeze is a repository aiming to provide code to reduce the size of Transformer-based models or decrease their latency at inference time.

Jules Belveze 66 Dec 11, 2022
Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters.

Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters. Overview This project is a Torch implementation for our CVPR 2016 paper

Jianwei Yang 278 Dec 25, 2022
Reference implementation of code generation projects from Facebook AI Research. General toolkit to apply machine learning to code, from dataset creation to model training and evaluation. Comes with pretrained models.

This repository is a toolkit to do machine learning for programming languages. It implements tokenization, dataset preprocessing, model training and m

Facebook Research 408 Jan 01, 2023
[ICCV 2021 Oral] NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo

NerfingMVS Project Page | Paper | Video | Data NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo Yi Wei, Shaohui

Yi Wei 369 Dec 24, 2022
[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition

CaaM This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, wh

Wang Tan 66 Dec 31, 2022
Utilities to bridge Canvas-generated course rosters with GitLab's API.

gitlab-canvas-utils A collection of scripts originally written for CSE 13S. Oversees everything from GitLab course group creation, student repository

Eugene Chou 5 Jun 08, 2022