Learning-based agent for Google Research Football

Overview

TiKick

License

1.Introduction

Learning-based agent for Google Research Football

Code accompanying the paper "TiKick: Towards Playing Multi-agent Football Full Games from Single-agent Demonstrations". [arxiv][videos]

2.Installation

pip install -r requirements.txt
pip install -e .

3.Evaluation with Trained Model

(a) First, you should download the trained model from Baidu Yun or Google Drive:

(b) Then, you should put the actor.pt under ./models/academy_3_vs_1_with_keeper/.

(c) Finally, you can go to the ./scripts/football folder and execute the evaluation script as below:

cd scripts/football
./evaluate.sh

Then the replay file will be saved into ./results/academy_3_vs_1_with_keeper/replay/.

  • Hyper-parameters in the evaluation script:
    • --replay_save_dir : the replay file will be saved in this directory
    • --model_dir : pre-trained model should be placed under this directory
    • --n_eval_rollout_threads : number of parallel envs for evaluating rollout
    • --eval_num : number of total evaluation times

4.Render with the Replay File

Once you obtain a replay file, you can convert it to a .avi file and watch the game. This can be easily done via:

cd scripts/football
python3 replay2video.py --replay_file ../../results/academy_3_vs_1_with_keeper/replay/your_path.dump

The video file will finally be saved to ./results/academy_3_vs_1_with_keeper/video/

5.Cite

Please cite our paper if you use our codes or our weights in your own work:

@misc{huang2021tikick,
    title={TiKick: Towards Playing Multi-agent Football Full Games from Single-agent Demonstrations},
    author={Shiyu Huang and Wenze Chen and Longfei Zhang and Ziyang Li and Fengming Zhu and Deheng Ye and Ting Chen and Jun Zhu},
    year={2021},
    eprint={2110.04507},
    archivePrefix={arXiv},
    primaryClass={cs.AI}
}
Owner
Tsinghua AI Research Team for Reinforcement Learning
Tsinghua AI Research Team for Reinforcement Learning (Creativity, Practicality and Optimist)
Tsinghua AI Research Team for Reinforcement Learning
[CoRL 21'] TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo

TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo Lukas Koestler1*    Nan Yang1,2*,†    Niclas Zeller2,3    Daniel Cremers1

TUM Computer Vision Group 744 Jan 04, 2023
Towards Representation Learning for Atmospheric Dynamics (AtmoDist)

Towards Representation Learning for Atmospheric Dynamics (AtmoDist) The prediction of future climate scenarios under anthropogenic forcing is critical

Sebastian Hoffmann 4 Dec 15, 2022
Repo 4 basic seminar §How to make human machine readable"

WORK IN PROGRESS... Notebooks from the Seminar: Human Machine Readable WS21/22 Introduction into programming Georg Trogemann, Christian Heck, Mattis

experimental-informatics 3 May 29, 2022
Augmented Traffic Control: A tool to simulate network conditions

Augmented Traffic Control Full documentation for the project is available at http://facebook.github.io/augmented-traffic-control/. Overview Augmented

Meta Archive 4.3k Jan 08, 2023
The implementation of ICASSP 2020 paper "Pixel-level self-paced learning for super-resolution"

Pixel-level Self-Paced Learning for Super-Resolution This is an official implementaion of the paper Pixel-level Self-Paced Learning for Super-Resoluti

Elon Lin 41 Dec 15, 2022
A simple, unofficial implementation of MAE using pytorch-lightning

Masked Autoencoders in PyTorch A simple, unofficial implementation of MAE (Masked Autoencoders are Scalable Vision Learners) using pytorch-lightning.

Connor Anderson 20 Dec 03, 2022
A modification of Daniel Russell's notebook merged with Katherine Crowson's hq-skip-net changes

Edits made to this repo by Katherine Crowson I have added several features to this repository for use in creating higher quality generative art (featu

Paul Fishwick 10 May 07, 2022
Alex Pashevich 62 Dec 24, 2022
Python package for downloading ECMWF reanalysis data and converting it into a time series format.

ecmwf_models Readers and converters for data from the ECMWF reanalysis models. Written in Python. Works great in combination with pytesmo. Citation If

TU Wien - Department of Geodesy and Geoinformation 31 Dec 26, 2022
Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets).

TOQ-Nets-PyTorch-Release Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets). Temporal and Object Quantification Net

Zhezheng Luo 9 Jun 30, 2022
Short and long time series classification using convolutional neural networks

time-series-classification Short and long time series classification via convolutional neural networks In this project, we present a novel framework f

35 Oct 22, 2022
Pytorch implementation of CoCon: A Self-Supervised Approach for Controlled Text Generation

COCON_ICLR2021 This is our Pytorch implementation of COCON. CoCon: A Self-Supervised Approach for Controlled Text Generation (ICLR 2021) Alvin Chan, Y

alvinchangw 79 Dec 18, 2022
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 03, 2023
Indonesian Car License Plate Character Recognition using Tensorflow, Keras and OpenCV.

Monopol Indonesian Car License Plate (Indonesia Mobil Nomor Polisi) Character Recognition using Tensorflow, Keras and OpenCV. Background This applicat

Jayaku Briliantio 3 Apr 07, 2022
Final project for Intro to CS class.

Financial Analysis Web App https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py 1. Project Description This project is a technical a

Mayur Khanna 1 Dec 10, 2021
Heterogeneous Temporal Graph Neural Network

Heterogeneous Temporal Graph Neural Network This repository contains the datasets and source code of HTGNN. run_mag.ipynb is the training and testing

15 Dec 22, 2022
Calling Julia from Python - an experiment on data loading

Calling Julia from Python - an experiment on data loading See the slides. TLDR After reading Patrick's blog post, we decided to try to replace C++ wit

Abel Siqueira 8 Jun 07, 2022
Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Bae, Gwangbin 95 Jan 04, 2023
Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)

VIN: Value Iteration Networks A quick thank you A few others have released amazing related work which helped inspire and improve my own implementation

Kent Sommer 297 Dec 26, 2022