One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking

Related tags

Deep Learningnas
Overview

One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking

This is an official implementation for NEAS presented in CVPR 2021.

Environment Setup

To set up the enviroment you can easily run the following command:

git clone https://github.com/researchmm/NEAS.git
cd NEAS
conda create -n NEAS python=3.6
conda activate NEAS
sh ./install.sh
# (required) install apex to accelerate the training, a little bit faster than pytorch DistributedDataParallel
cd lib
git clone https://github.com/NVIDIA/apex.git
python ./apex/setup.py install --cpp_ext --cuda_ext

Data Preparation

You need to first download the ImageNet-2012 to the folder ./data/imagenet and move the validation set to the subfolder ./data/imagenet/val. To move the validation set, you cloud use the following script: https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh

The directory structure is the standard layout as following.

/path/to/imagenet/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class/2
      img4.jpeg

Model Zoo

For evaluation, we provide the checkpoints of our models in Google Drive.

After downloading the models, you can do the evaluation following the description in Quick Start - Test).

Model download links:

Model FLOPs Top-1 Acc. % Top-5 Acc. % Link
NEAS-S 314M 77.9 93.9 Google Drive
NEAS-M 472M 79.5 94.6 Google Drive
NEAS-L 574M 80.0 94.8 Google Drive

Quick Start

We provide test code of NEAS as follows.

Test

To test our trained models, you need to put the downloaded model in PATH_TO_CKP (the default path is ./CKP in root directory.). After that you need to specify the model path in the corresponding config file by changing the intitial-checkpoint argument in ./configs/subnets/[SELECTED_MODEL_SIZE].yaml.

Then, you could use the following command to test the model.

sh ./tools/distributed_test.sh ./configs/subnets/[SELECTED_MODEL_SIZE].yaml

The test result will be saved in ./experiments. You can also add [--output OUTPUT_PATH] in ./tools/distribution_test.sh to specify a path for it as well.

To Do List

  • Test code
  • Retrain code
  • Search code

BibTex

@article{NEAS,
  title={One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking},
  author={Chen, Minghao and Peng, Houwen and Fu, Jianlong and Ling, Haibin},
  journal={arXiv preprint arXiv:2104.00597},
  year={2021}
}
Owner
Multimedia Research
Multimedia Research at Microsoft Research Asia
Multimedia Research
ML model to classify between cats and dogs

Cats-and-dogs-classifier This is my first ML model which can classify between cats and dogs. Here the accuracy is around 75%, however , the accuracy c

Sharath V 4 Aug 20, 2021
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO)

KernelFunctionalOptimisation Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO) We have conducted all our experiments

2 Jun 29, 2022
Unofficial Tensorflow Implementation of ConvNeXt from A ConvNet for the 2020s

Tensorflow Implementation of "A ConvNet for the 2020s" This is the unofficial Tensorflow Implementation of ConvNeXt from "A ConvNet for the 2020s" pap

DK 11 Oct 12, 2022
NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions

NeoDTI NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions (Bioinformatics).

62 Nov 26, 2022
PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

Rithesh Kumar 135 Oct 27, 2022
This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch

NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch, train it, collect statistics, and share it among the members of the community. It is not just a visual

HTM Community 93 Sep 30, 2022
Fashion Entity Classification

Fashion-Entity-Classification - Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grays

ADITYA SHAH 1 Jan 04, 2022
Intel® Nervana™ reference deep learning framework committed to best performance on all hardware

DISCONTINUATION OF PROJECT. This project will no longer be maintained by Intel. Intel will not provide or guarantee development of or support for this

Nervana 3.9k Dec 20, 2022
Official PyTorch implementation of MAAD: A Model and Dataset for Attended Awareness

MAAD: A Model for Attended Awareness in Driving Install // Datasets // Training // Experiments // Analysis // License Official PyTorch implementation

7 Oct 16, 2022
Code for ACM MM 2020 paper "NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination"

NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination The offical implementation for the "NOH-NMS: Improving Pedestrian Detection by

Tencent YouTu Research 64 Nov 11, 2022
An official implementation of the Anchor DETR.

Anchor DETR: Query Design for Transformer-Based Detector Introduction This repository is an official implementation of the Anchor DETR. We encode the

MEGVII Research 276 Dec 28, 2022
Dahua Camera and Doorbell Home Assistant Integration

Home Assistant Dahua Integration The Dahua Home Assistant integration allows you to integrate your Dahua cameras and doorbells in Home Assistant. It's

Ronnie 216 Dec 26, 2022
CLIP: Connecting Text and Image (Learning Transferable Visual Models From Natural Language Supervision)

CLIP (Contrastive Language–Image Pre-training) Experiments (Evaluation) Model Dataset Acc (%) ViT-B/32 (Paper) CIFAR100 65.1 ViT-B/32 (Our) CIFAR100 6

Myeongjun Kim 52 Jan 07, 2023
Code for "My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack" paper

Myo Keylogging This is the source code for our paper My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack by Matthias Ga

Secure Mobile Networking Lab 7 Jan 03, 2023
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022
https://sites.google.com/cornell.edu/recsys2021tutorial

Counterfactual Learning and Evaluation for Recommender Systems (RecSys'21 Tutorial) Materials for "Counterfactual Learning and Evaluation for Recommen

yuta-saito 45 Nov 10, 2022
Code for the paper: "On the Bottleneck of Graph Neural Networks and Its Practical Implications"

On the Bottleneck of Graph Neural Networks and its Practical Implications This is the official implementation of the paper: On the Bottleneck of Graph

75 Dec 22, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models This repo contains code for DDPM training. Based on Denoising Diffusion Probabilistic Models, Improved Denois

Alexander Markov 7 Dec 15, 2022