Layered Neural Atlases for Consistent Video Editing

Overview

Layered Neural Atlases for Consistent Video Editing

Project Page | Paper

This repository contains an implementation for the SIGGRAPH Asia 2021 paper Layered Neural Atlases for Consistent Video Editing.

The paper introduces the first approach for neural video unwrapping using an end-to-end optimized interpretable and semantic atlas-based representation, which facilitates easy and intuitive editing in the atlas domain.

Installation Requirements

The code is compatible with Python 3.7 and PyTorch 1.6.

You can create an anaconda environment called neural_atlases with the required dependencies by running:

conda create --name neural_atlases python=3.7 
conda activate neural_atlases 
conda install pytorch=1.6.0 torchvision=0.7.0 cudatoolkit=10.1 matplotlib tensorboard scipy  scikit-image tqdm  opencv -c pytorch
pip install imageio-ffmpeg gdown
python -m pip install detectron2 -f   https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.6/index.html

Data convention

The code expects 3 folders for each video input, e.g. for a video of 50 frames named "blackswan":

  1. data/blackswan: A folder of video frames containing image files in the following convention: blackswan/00000.jpg,blackswan/00001.jpg,...,blackswan/00049.jpg (as in the DAVIS dataset).
  2. data/blackswan_flow: A folder with forward and backward optical flow files in the following convention: blackswan_flow/00000.jpg_00001.jpg.npy,blackswan_flow/00001.jpg_00000.jpg,...,blackswan_flow/00049.jpg_00048.jpg.npy.
  3. data/blackswan_maskrcnn: A folder with rough masks (created by Mask-RCNN or any other way) containing files in the following convention: blackswan_maskrcnn/00000.jpg,blackswan_maskrcnn/00001.jpg,...,blackswan_maskrcnn/00049.jpg

For a few examples of DAVIS sequences run:

gdown https://drive.google.com/uc?id=1WipZR9LaANTNJh764ukznXXAANJ5TChe
unzip data.zip

Masks extraction

Given only the video frames folder data/blackswan it is possible to extract the Mask-RCNN masks (and create the required folder data/blackswan_maskrcnn) by running:

python preprocess_mask_rcnn.py --vid-path data/blackswan --class_name bird

where --class_name determines the COCO class name of the sought foreground object. It is also possible to choose the first instance retrieved by Mask-RCNN by using --class_name anything. This is usefull for cases where Mask-RCNN gets correct masks with wrong classes as in the "libby" video:

python preprocess_mask_rcnn.py --vid-path data/libby --class_name anything

Optical flows extraction

Furthermore, the optical flow folder can be extracted using RAFT. For linking RAFT into the current project run:

git submodule update --init
cd thirdparty/RAFT/
./download_models.sh
cd ../..

For extracting the optical flows (and creating the required folder data/blackswan_flow) run:

python preprocess_optical_flow.py --vid-path data/blackswan --max_long_edge 768

Pretrained models

For downloading a sample set of our pretrained models together with sample edits run:

gdown https://drive.google.com/uc?id=10voSCdMGM5HTIYfT0bPW029W9y6Xij4D
unzip pretrained_models.zip

Training

For training a model on a video, run:

python train.py config/config.json

where the video frames folder is determined by the config parameter "data_folder". Note that in order to reduce the training time it is possible to reduce the evaluation frequency controlled by the parameter "evaluate_every" (e.g. by changing it to 10000). The other configurable parameters are documented inside the file train.py.

Evaluation

During training, the model is evaluated. For running only evaluation on a trained folder run:

python only_evaluate.py --trained_model_folder=pretrained_models/checkpoints/blackswan --video_name=blackswan --data_folder=data --output_folder=evaluation_outputs

where trained_model_folder is the path to a folder that contains the config.json and checkpoint files of the trained model.

Editing

To apply editing, run the script only_edit.py. Examples for the supplied pretrained models for "blackswan" and "boat":

python only_edit.py --trained_model_folder=pretrained_models/checkpoints/blackswan --video_name=blackswan --data_folder=data --output_folder=editing_outputs --edit_foreground_path=pretrained_models/edit_inputs/blackswan/edit_blackswan_foreground.png --edit_background_path=pretrained_models/edit_inputs/blackswan/edit_blackswan_background.png
python only_edit.py --trained_model_folder=pretrained_models/checkpoints/boat --video_name=boat --data_folder=data --output_folder=editing_outputs --edit_foreground_path=pretrained_models/edit_inputs/boat/edit_boat_foreground.png --edit_background_path=pretrained_models/edit_inputs/boat/edit_boat_backgound.png

Where edit_foreground_path and edit_background_path specify the paths to 1000x1000 images of the RGBA atlas edits.

For applying an edit that was done on a frame (e.g. for the pretrained "libby"):

python only_edit.py --trained_model_folder=pretrained_models/checkpoints/libby --video_name=libby --data_folder=data --output_folder=editing_outputs  --use_edit_frame --edit_frame_index=7 --edit_frame_path=pretrained_models/edit_inputs/libby/edit_frame_.png

Citation

If you find our work useful in your research, please consider citing:

@article{kasten2021layered,
  title={Layered Neural Atlases for Consistent Video Editing},
  author={Kasten, Yoni and Ofri, Dolev and Wang, Oliver and Dekel, Tali},
  journal={arXiv preprint arXiv:2109.11418},
  year={2021}
}
Owner
Yoni Kasten
Yoni Kasten
Research code for Arxiv paper "Camera Motion Agnostic 3D Human Pose Estimation"

GMR(Camera Motion Agnostic 3D Human Pose Estimation) This repo provides the source code of our arXiv paper: Seong Hyun Kim, Sunwon Jeong, Sungbum Park

Seong Hyun Kim 1 Feb 07, 2022
RoMa: A lightweight library to deal with 3D rotations in PyTorch.

RoMa: A lightweight library to deal with 3D rotations in PyTorch. RoMa (which stands for Rotation Manipulation) provides differentiable mappings betwe

NAVER 90 Dec 27, 2022
BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation This is a demo implementation of BYOL for Audio (BYOL-A), a self-sup

NTT Communication Science Laboratories 160 Jan 04, 2023
Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020

Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020 BibTeX @INPROCEEDINGS{punnappurath2020modeling, author={Abhi

Abhijith Punnappurath 22 Oct 01, 2022
This repository contains demos I made with the Transformers library by HuggingFace.

Transformers-Tutorials Hi there! This repository contains demos I made with the Transformers library by 🤗 HuggingFace. Currently, all of them are imp

3.5k Jan 01, 2023
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrai

Hugging Face 77.4k Jan 05, 2023
Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, Pattern Recognition

USDAN The implementation of Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, which is accepte

11 Nov 03, 2022
Dirty Pixels: Towards End-to-End Image Processing and Perception

Dirty Pixels: Towards End-to-End Image Processing and Perception This repository contains the code for the paper Dirty Pixels: Towards End-to-End Imag

50 Nov 18, 2022
An NVDA add-on to split screen reader and audio from other programs to different sound channels

An NVDA add-on to split screen reader and audio from other programs to different sound channels (add-on idea credit: Tony Malykh)

Joseph Lee 7 Dec 25, 2022
Datasets, Transforms and Models specific to Computer Vision

torchvision The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision. Installat

13.1k Jan 02, 2023
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
[ICCV 2021] Code release for "Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks"

Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks By Yikai Wang, Yi Yang, Fuchun Sun, Anbang Yao. This is the pytorc

Yikai Wang 26 Nov 20, 2022
Planning from Pixels in Environments with Combinatorially Hard Search Spaces -- NeurIPS 2021

PPGS: Planning from Pixels in Environments with Combinatorially Hard Search Spaces Environment Setup We recommend pipenv for creating and managing vir

Autonomous Learning Group 11 Jun 26, 2022
Self-Supervised Learning with Kernel Dependence Maximization

Self-Supervised Learning with Kernel Dependence Maximization This is the code for SSL-HSIC, a self-supervised learning loss proposed in the paper Self

DeepMind 29 Dec 29, 2022
Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio"

Success Predictor Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio". B

Rodrigo Nazar Meier 4 Mar 17, 2022
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022
Xi Dongbo 78 Nov 29, 2022
Boosted neural network for tabular data

XBNet - Xtremely Boosted Network Boosted neural network for tabular data XBNet is an open source project which is built with PyTorch which tries to co

Tushar Sarkar 175 Jan 04, 2023
Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model.

Exposure: A White-Box Photo Post-Processing Framework ACM Transactions on Graphics (presented at SIGGRAPH 2018) Yuanming Hu1,2, Hao He1,2, Chenxi Xu1,

Yuanming Hu 719 Dec 29, 2022