FCOS: Fully Convolutional One-Stage Object Detection (ICCV'19)

Overview

FCOS: Fully Convolutional One-Stage Object Detection

This project hosts the code for implementing the FCOS algorithm for object detection, as presented in our paper:

FCOS: Fully Convolutional One-Stage Object Detection;
Zhi Tian, Chunhua Shen, Hao Chen, and Tong He;
In: Proc. Int. Conf. Computer Vision (ICCV), 2019.
arXiv preprint arXiv:1904.01355 

The full paper is available at: https://arxiv.org/abs/1904.01355.

Implementation based on Detectron2 is included in AdelaiDet.

A real-time model with 46FPS and 40.3 in AP on COCO minival is also available here.

Highlights

  • Totally anchor-free: FCOS completely avoids the complicated computation related to anchor boxes and all hyper-parameters of anchor boxes.
  • Better performance: The very simple one-stage detector achieves much better performance (38.7 vs. 36.8 in AP with ResNet-50) than Faster R-CNN. Check out more models and experimental results here.
  • Faster training and testing: With the same hardwares and backbone ResNet-50-FPN, FCOS also requires less training hours (6.5h vs. 8.8h) than Faster R-CNN. FCOS also takes 12ms less inference time per image than Faster R-CNN (44ms vs. 56ms).
  • State-of-the-art performance: Our best model based on ResNeXt-64x4d-101 and deformable convolutions achieves 49.0% in AP on COCO test-dev (with multi-scale testing).

Updates

  • FCOS with Fast And Diverse (FAD) neural architecture search is avaliable at FAD. (30/10/2020)
  • Script for exporting ONNX models. (21/11/2019)
  • New NMS (see #165) speeds up ResNe(x)t based models by up to 30% and MobileNet based models by 40%, with exactly the same performance. Check out here. (12/10/2019)
  • New models with much improved performance are released. The best model achieves 49% in AP on COCO test-dev with multi-scale testing. (11/09/2019)
  • FCOS with VoVNet backbones is available at VoVNet-FCOS. (08/08/2019)
  • A trick of using a small central region of the BBox for training improves AP by nearly 1 point as shown here. (23/07/2019)
  • FCOS with HRNet backbones is available at HRNet-FCOS. (03/07/2019)
  • FCOS with AutoML searched FPN (R50, R101, ResNeXt101 and MobileNetV2 backbones) is available at NAS-FCOS. (30/06/2019)
  • FCOS has been implemented in mmdetection. Many thanks to @yhcao6 and @hellock. (17/05/2019)

Required hardware

We use 8 Nvidia V100 GPUs.
But 4 1080Ti GPUs can also train a fully-fledged ResNet-50-FPN based FCOS since FCOS is memory-efficient.

Installation

Testing-only installation

For users who only want to use FCOS as an object detector in their projects, they can install it by pip. To do so, run:

pip install torch  # install pytorch if you do not have it
pip install git+https://github.com/tianzhi0549/FCOS.git
# run this command line for a demo 
fcos https://github.com/tianzhi0549/FCOS/raw/master/demo/images/COCO_val2014_000000000885.jpg

Please check out here for the interface usage.

For a complete installation

This FCOS implementation is based on maskrcnn-benchmark. Therefore the installation is the same as original maskrcnn-benchmark.

Please check INSTALL.md for installation instructions. You may also want to see the original README.md of maskrcnn-benchmark.

A quick demo

Once the installation is done, you can follow the below steps to run a quick demo.

# assume that you are under the root directory of this project,
# and you have activated your virtual environment if needed.
wget https://cloudstor.aarnet.edu.au/plus/s/ZSAqNJB96hA71Yf/download -O FCOS_imprv_R_50_FPN_1x.pth
python demo/fcos_demo.py

Inference

The inference command line on coco minival split:

python tools/test_net.py \
    --config-file configs/fcos/fcos_imprv_R_50_FPN_1x.yaml \
    MODEL.WEIGHT FCOS_imprv_R_50_FPN_1x.pth \
    TEST.IMS_PER_BATCH 4    

Please note that:

  1. If your model's name is different, please replace FCOS_imprv_R_50_FPN_1x.pth with your own.
  2. If you enounter out-of-memory error, please try to reduce TEST.IMS_PER_BATCH to 1.
  3. If you want to evaluate a different model, please change --config-file to its config file (in configs/fcos) and MODEL.WEIGHT to its weights file.
  4. Multi-GPU inference is available, please refer to #78.
  5. We improved the postprocess efficiency by using multi-label nms (see #165), which saves 18ms on average. The inference metric in the following tables has been updated accordingly.

Models

For your convenience, we provide the following trained models (more models are coming soon).

ResNe(x)ts:

All ResNe(x)t based models are trained with 16 images in a mini-batch and frozen batch normalization (i.e., consistent with models in maskrcnn_benchmark).

Model Multi-scale training Testing time / im AP (minival) Link
FCOS_imprv_R_50_FPN_1x No 44ms 38.7 download
FCOS_imprv_dcnv2_R_50_FPN_1x No 54ms 42.3 download
FCOS_imprv_R_101_FPN_2x Yes 57ms 43.0 download
FCOS_imprv_dcnv2_R_101_FPN_2x Yes 73ms 45.6 download
FCOS_imprv_X_101_32x8d_FPN_2x Yes 110ms 44.0 download
FCOS_imprv_dcnv2_X_101_32x8d_FPN_2x Yes 143ms 46.4 download
FCOS_imprv_X_101_64x4d_FPN_2x Yes 112ms 44.7 download
FCOS_imprv_dcnv2_X_101_64x4d_FPN_2x Yes 144ms 46.6 download

Note that imprv denotes improvements in our paper Table 3. These almost cost-free changes improve the performance by ~1.5% in total. Thus, we highly recommend to use them. The following are the original models presented in our initial paper.

Model Multi-scale training Testing time / im AP (minival) AP (test-dev) Link
FCOS_R_50_FPN_1x No 45ms 37.1 37.4 download
FCOS_R_101_FPN_2x Yes 59ms 41.4 41.5 download
FCOS_X_101_32x8d_FPN_2x Yes 110ms 42.5 42.7 download
FCOS_X_101_64x4d_FPN_2x Yes 113ms 43.0 43.2 download

MobileNets:

We update batch normalization for MobileNet based models. If you want to use SyncBN, please install pytorch 1.1 or later.

Model Training batch size Multi-scale training Testing time / im AP (minival) Link
FCOS_syncbn_bs32_c128_MNV2_FPN_1x 32 No 26ms 30.9 download
FCOS_syncbn_bs32_MNV2_FPN_1x 32 No 33ms 33.1 download
FCOS_bn_bs16_MNV2_FPN_1x 16 No 44ms 31.0 download

[1] 1x and 2x mean the model is trained for 90K and 180K iterations, respectively.
[2] All results are obtained with a single model and without any test time data augmentation such as multi-scale, flipping and etc..
[3] c128 denotes the model has 128 (instead of 256) channels in towers (i.e., MODEL.RESNETS.BACKBONE_OUT_CHANNELS in config).
[4] dcnv2 denotes deformable convolutional networks v2. Note that for ResNet based models, we apply deformable convolutions from stage c3 to c5 in backbones. For ResNeXt based models, only stage c4 and c5 use deformable convolutions. All models use deformable convolutions in the last layer of detector towers.
[5] The model FCOS_imprv_dcnv2_X_101_64x4d_FPN_2x with multi-scale testing achieves 49.0% in AP on COCO test-dev. Please use TEST.BBOX_AUG.ENABLED True to enable multi-scale testing.

Training

The following command line will train FCOS_imprv_R_50_FPN_1x on 8 GPUs with Synchronous Stochastic Gradient Descent (SGD):

python -m torch.distributed.launch \
    --nproc_per_node=8 \
    --master_port=$((RANDOM + 10000)) \
    tools/train_net.py \
    --config-file configs/fcos/fcos_imprv_R_50_FPN_1x.yaml \
    DATALOADER.NUM_WORKERS 2 \
    OUTPUT_DIR training_dir/fcos_imprv_R_50_FPN_1x

Note that:

  1. If you want to use fewer GPUs, please change --nproc_per_node to the number of GPUs. No other settings need to be changed. The total batch size does not depends on nproc_per_node. If you want to change the total batch size, please change SOLVER.IMS_PER_BATCH in configs/fcos/fcos_R_50_FPN_1x.yaml.
  2. The models will be saved into OUTPUT_DIR.
  3. If you want to train FCOS with other backbones, please change --config-file.
  4. If you want to train FCOS on your own dataset, please follow this instruction #54.
  5. Now, training with 8 GPUs and 4 GPUs can have the same performance. Previous performance gap was because we did not synchronize num_pos between GPUs when computing loss.

ONNX

Please refer to the directory onnx for an example of exporting the model to ONNX. A converted model can be downloaded here. We recommend you to use PyTorch >= 1.4.0 (or nightly) and torchvision >= 0.5.0 (or nightly) for ONNX models.

Contributing to the project

Any pull requests or issues are welcome.

Citations

Please consider citing our paper in your publications if the project helps your research. BibTeX reference is as follows.

@inproceedings{tian2019fcos,
  title   =  {{FCOS}: Fully Convolutional One-Stage Object Detection},
  author  =  {Tian, Zhi and Shen, Chunhua and Chen, Hao and He, Tong},
  booktitle =  {Proc. Int. Conf. Computer Vision (ICCV)},
  year    =  {2019}
}
@article{tian2021fcos,
  title   =  {{FCOS}: A Simple and Strong Anchor-free Object Detector},
  author  =  {Tian, Zhi and Shen, Chunhua and Chen, Hao and He, Tong},
  booktitle =  {IEEE T. Pattern Analysis and Machine Intelligence (TPAMI)},
  year    =  {2021}
}

Acknowledgments

We would like to thank @yqyao for the tricks of center sampling and GIoU. We also thank @bearcatt for his suggestion of positioning the center-ness branch with box regression (refer to #89).

License

For academic use, this project is licensed under the 2-clause BSD License - see the LICENSE file for details. For commercial use, please contact the authors.

Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
Async API for controlling Hue Lights

Hue API Async API for controlling Hue Lights Documentation: hue-api.nirantak.com Source: github.com/nirantak/hue-api Installation This is an async cli

Nirantak Raghav 4 Nov 16, 2022
DTCN IJCAI - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Pytorch当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和

Bubbliiiing 102 Dec 30, 2022
내가 보려고 정리한 <프로그래밍 기초 Ⅰ> / organized for me

Programming-Basics 프로그래밍 기초 Ⅰ 아카이브 Do it! 점프 투 파이썬 주차 강의주제 비고 1주차 Syllabus 2주차 자료형 - 숫자형 3주차 자료형 - 문자열형 4주차 입력과 출력 5주차 제어문 - 조건문 if 6주차 제어문 - 반복문 whil

KIMMINSEO 1 Mar 07, 2022
A platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Wilderness Scavenger: 3D Open-World FPS Game AI Challenge This is a platform for intelligent agent learning based on a 3D open-world FPS game develope

46 Nov 24, 2022
Visualizer using audio and semantic analysis to explore BigGAN (Brock et al., 2018) latent space.

BigGAN Audio Visualizer Description This visualizer explores BigGAN (Brock et al., 2018) latent space by using pitch/tempo of an audio file to generat

Rush Kapoor 2 Nov 21, 2022
Collect super-resolution related papers, data, repositories

Collect super-resolution related papers, data, repositories

WangChaofeng 1.7k Jan 03, 2023
UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation

UNION Automatic Evaluation Metric described in the paper UNION: An UNreferenced MetrIc for Evaluating Open-eNded Story Generation (EMNLP 2020). Please

50 Dec 30, 2022
MoveNet Single Pose on OpenVINO

MoveNet Single Pose tracking on OpenVINO Running Google MoveNet Single Pose models on OpenVINO. A convolutional neural network model that runs on RGB

35 Nov 11, 2022
A new test set for ImageNet

ImageNetV2 The ImageNetV2 dataset contains new test data for the ImageNet benchmark. This repository provides associated code for assembling and worki

186 Dec 18, 2022
A Python parser that takes the content of a text file and then reads it into variables.

Text-File-Parser A Python parser that takes the content of a text file and then reads into variables. Input.text File 1. What is your ***? 1. 18 -

Kelvin 0 Jul 26, 2021
Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal"

Patch-wise Adversarial Removal Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal

4 Oct 12, 2022
Preparation material for Dropbox interviews

Dropbox-Onsite-Interviews A guide for the Dropbox onsite interview! The Dropbox interview question bank is very small. The bank has been in a Chinese

386 Dec 31, 2022
Keras Model Implementation Walkthrough

Keras Model Implementation Walkthrough

Luke Wood 17 Sep 27, 2022
[UNMAINTAINED] Automated machine learning for analytics & production

auto_ml Automated machine learning for production and analytics Installation pip install auto_ml Getting started from auto_ml import Predictor from au

Preston Parry 1.6k Jan 02, 2023
Group Activity Recognition with Clustered Spatial Temporal Transformer

GroupFormer Group Activity Recognition with Clustered Spatial-TemporalTransformer Backbone Style Action Acc Activity Acc Config Download Inv3+flow+pos

28 Dec 12, 2022
Collection of in-progress libraries for entity neural networks.

ENN Incubator Collection of in-progress libraries for entity neural networks: Neural Network Architectures for Structured State Entity Gym: Abstractio

25 Dec 01, 2022
Semantic Segmentation of images using PixelLib with help of Pascalvoc dataset trained with Deeplabv3+ framework.

CARscan- Approach 1 - Segmentation of images by detecting contours. It failed because in images with elements along with cars were also getting detect

Padmanabha Banerjee 5 Jul 29, 2021
Contrastive Loss Gradient Attack (CLGA)

Contrastive Loss Gradient Attack (CLGA) Official implementation of Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, WWW22 Bu

12 Dec 23, 2022