Machine Learning in Asset Management (by @firmai)

Overview

Machine Learning in Asset Management

If you like this type of content then visit ML Quant site below:

https://www.ml-quant.com/


Part One

Follow this link for SSRN paper.

If you feel like citing something you can use:

Snow, D (2020). Machine Learning in Asset Management—Part 1: Portfolio Construction—Trading Strategies. The Journal of Financial Data Science, Winter 2020, 2 (1) 10-23.

This is the first in a series of articles dealing with machine learning in asset management. Asset management can be broken into the following tasks: (1) portfolio construction, (2) risk management, (3) capital management, (4) infrastructure and deployment, and (5) sales and marketing. This article focuses on portfolio construction using machine learning. Historically, algorithmic trading could be more narrowly defined as the automation of sell-side trade execution, but since the introduction of more advanced algorithms, the definition has grown to include idea generation, alpha factor design, asset allocation, position sizing, and the testing of strategies. Machine learning, from the vantage of a decision-making tool, can help in all these areas.

Editors: Frank J. Fabozzi | Marcos Lopéz de Prado | Joseph Simonian

This paper investigates various machine learning trading and portfolio optimisation models and techniques. The notebooks to this paper are Python based. By last count there are about 15 distinct trading varieties and around 100 trading strategies. Code and data are made available where appropriate. The hope is that this paper will organically grow with future developments in machine learning and data processing techniques. All feedback, contributions and criticisms are highly encouraged. You can find my contact details on the website, FirmAI.

Trading Strategies


1. Tiny CTA
Resources:
See this paper and blog for further explanation.
Data, Code


2. Tiny RL
Resources:
See this paper and/or blog for further explanation.
Data, Code


3. Tiny VIX CMF
Resources:
Data, Code


4. Quantamental
Resources:
Web-scrapers, Data, Code, Interactive Report, Paper.


5. Earnings Surprise
Resources:
Code, Paper


6. Bankruptcy Prediction
Resources:
Data, Code, Paper


7. Filing Outcomes
Resources:
Data


8. Credit Rating Arbitrage
Resources:
Code


9. Factor Investing:
Resources:
Paper, Code, Data


10. Systematic Global Macro
Resources:
Data, Code


11. Mixture Models
Resources:
Data, Code


12. Evolutionary
Resources:
Code, Repo


13. Agent Strategy
Resources:
Code, Repo


14. Stacked Trading
Resources:
Code, Blog


15. Deep Trading
Resources:
Code, Repo


Part Two:

Snow, D (2020). Machine Learning in Asset Management—Part 2: Portfolio Construction—Weight Optimization. The Journal of Financial Data Science, Spring 2020, 2 (1) 10-23.

This is the second in a series of articles dealing with machine learning in asset management. This article focuses on portfolio weighting using machine learning. Following from the previous article (Snow 2020), which looked at trading strategies, this article identifies different weight optimization methods for supervised, unsupervised, and reinforcement learning frameworks. In total, seven submethods are summarized with the code made available for further exploration.

Weight Optimisation (JFDS)


1. Deep Portfolio
Resources:
Data, Code, Paper


2. Linear Regression
Resources:
Code, Paper


3. Bayesian Sentiment
Resources:
Code


4. PCA and Hierarchical
Resource:
Code


5. HRP
Resources:
Data, Code


6. Network Graph
Resources:
Code


7. RL Deep Deterministic
Resources:
Code

Weight Optimisation (SSRN)


1. Online Portfolio Selection (OLPS)
Resources:
Code

Other (SSRN)


1. GANVaR
Resources:
Code


All Data and Code


Top 1% SSRN paper downloads

All Time Top 10 Paper :

Applied Computing eJournal, CompSciRN: Algorithms, CompSciRN: Clustering, Banking & Financial Institutions eJournals, CompSciRN: Artificial Intelligence, Econometric Modeling: Capital Markets - Portfolio Theory eJournal, Machine Learning eJournal

Other Projects

Other FirmAI projects include AtsPy automating Python's best time series models, PandaPy a data structure solutions that has the speed of NumPy and the usability of Pandas (10x to 50x faster), FairPut a holistic approach to implement fair machine learning outputs at the individual and group level, PandasVault a package for advanced pandas functions and code snippets, and ICR an interactive and fully automated corporate report built with Python.

Learning Saliency Propagation for Semi-supervised Instance Segmentation

Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of

Berkeley DeepDrive 68 Oct 18, 2022
The Fundamental Clustering Problems Suite (FCPS) summaries 54 state-of-the-art clustering algorithms, common cluster challenges and estimations of the number of clusters as well as the testing for cluster tendency.

FCPS Fundamental Clustering Problems Suite The package provides over sixty state-of-the-art clustering algorithms for unsupervised machine learning pu

9 Nov 27, 2022
Uni-Fold: Training your own deep protein-folding models.

Uni-Fold: Training your own deep protein-folding models. This package provides and implementation of a trainable, Transformer-based deep protein foldi

DeepModeling 88 Jan 03, 2023
converts nominal survey data into a numerical value based on a dictionary lookup.

SWAP RATE Converts nominal survey data into a numerical values based on a dictionary lookup. It allows the user to switch nominal scale data from text

Jake Rhodes 1 Jan 18, 2022
Implementation of ICCV21 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers

Implementation of ICCV 2021 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers arxiv This repository is based on detr Recently, DETR

twang 113 Dec 27, 2022
Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Gabriel Huang 70 Jan 07, 2023
GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration

GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration Stefan Abi-Karam*, Yuqi He*, Rishov Sarkar*, Lakshmi Sathidevi, Zihang Qiao, Co

Sharc-Lab 19 Dec 15, 2022
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S

Angtian Wang 20 Oct 09, 2022
Release of SPLASH: Dataset for semantic parse correction with natural language feedback in the context of text-to-SQL parsing

SPLASH: Semantic Parsing with Language Assistance from Humans SPLASH is dataset for the task of semantic parse correction with natural language feedba

Microsoft Research - Language and Information Technologies (MSR LIT) 35 Oct 31, 2022
Betafold - AlphaFold with tunings

BetaFold We (hegelab.org) craeted this standalone AlphaFold (AlphaFold-Multimer,

2 Aug 11, 2022
Extracts data from the database for a graph-node and stores it in parquet files

subgraph-extractor Extracts data from the database for a graph-node and stores it in parquet files Installation For developing, it's recommended to us

Cardstack 0 Jan 10, 2022
[arXiv'22] Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation

Panoptic NeRF Project Page | Paper | Dataset Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation Xiao Fu*, Shangzhan zhang*,

Xiao Fu 111 Dec 16, 2022
PyTorch implementation for STIN

STIN This repository contains PyTorch implementation for STIN. Abstract: In single-photon LiDAR, photon-efficient imaging captures the 3D structure of

Yiweins 2 Nov 22, 2022
This is a Deep Leaning API for classifying emotions from human face and human audios.

Emotion AI This is a Deep Leaning API for classifying emotions from human face and human audios. Starting the server To start the server first you nee

crispengari 5 Oct 02, 2022
PyTorch evaluation code for Delving Deep into the Generalization of Vision Transformers under Distribution Shifts.

Out-of-distribution Generalization Investigation on Vision Transformers This repository contains PyTorch evaluation code for Delving Deep into the Gen

Chongzhi Zhang 72 Dec 13, 2022
This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust.

Demo BERT ONNX pipeline written in rust This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust. R

Xavier Tao 14 Dec 17, 2022
Benchmark spaces - Benchmarks of how well different two dimensional spaces work for clustering algorithms

benchmark_spaces Benchmarks of how well different two dimensional spaces work fo

Bram Cohen 6 May 07, 2022
A generalized framework for prototyping full-stack cooperative driving automation applications under CARLA+SUMO.

OpenCDA OpenCDA is a SIMULATION tool integrated with a prototype cooperative driving automation (CDA; see SAE J3216) pipeline as well as regular autom

UCLA Mobility Lab 726 Dec 29, 2022
A clear, concise, simple yet powerful and efficient API for deep learning.

The Gluon API Specification The Gluon API specification is an effort to improve speed, flexibility, and accessibility of deep learning technology for

Gluon API 2.3k Dec 17, 2022
PyTorch implementation of our ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer.

Unsupervised_IEPGAN This is the PyTorch implementation of our ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer. Ha

25 Oct 26, 2022