Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems"

Overview

Code Artifacts

Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems"

Demos

Testbed

Real-world Environment

Virtual Environment (Unity)

Sim2Real and Real2Sim translations by CycleGAN

Self-driving cars

The same DNN model deployed on a real-world electric vehicle and in a virtual simulated world

Visual Odometry

Real-time XTE predictions in the real-world with visual odometry

Corruptions (left) and Adversarial Examples (right)

Requisites

Python3, git 64 bit, miniconda 3.7 64 bit. To modify the simulator (optional): Unity 2019.3.0f1

Software setup: We adopted the PyCharm Professional 2020.3, a Python IDE by JetBrains, and Python 3.7.

Hardware setup: Training the DNN models (self-driving cars) and CycleGAN on our datasets is computationally expensive. Therefore, we recommend using a machine with a GPU. In our setting, we ran our experiments on a machine equipped with a AMD Ryzen 5 processor, 8 GB of memory, and an NVIDIA GPU GeForce RTX 2060 with 6 GB of dedicated memory. Our trained models are available here.

Donkey Car

We used Donkey Car v. 3.1.5. Make sure you correctly install the donkey car software, the necessary simulator software and our simulator (macOS only).

* git clone https://github.com/autorope/donkeycar.git
* git checkout a91f88d
* conda env remove -n donkey
* conda env create -f install/envs/mac.yml
* conda activate donkey
* pip install -e .\[pc\]

XTE Predictor for real-world driving images

Data collection for a XTE predictor must be collected manually (or our datasets can be used). Alternatively, data can be collected by:

  1. Launching the Simulator.
  2. Selecting a log directory by clicking the 'log dir' button
  3. Selecting a preferred resolution (default is 320x240)
  4. Launching the Sanddbox Track scene and drive the car with the 'Joystick/Keyboard w Rec' button
  5. Driving the car

This will generate a dataset of simulated images and respective XTEs (labels). The simulated images have then to be converted using a CycleGAN network trained to do sim2real translation.

Once the dataset of converted images and XTEs is collected, use the train_xte_predictor.py notebook to train the xte predictor.

Self-Driving Cars

Manual driving

Connection

Donkey Car needs a static IP so that we can connect onto the car

ssh jetsonnano@
   
    
Pwd: 
    

    
   

Joystick Pairing

ds4drv &

PS4 controller: press PS + share and hold; starts blinking and pairing If [error][bluetooth] Unable to connect to detected device: Failed to set operational mode: [Errno 104] Connection reset by peer Try again When LED is green, connection is ok

python manage.py drive —js  // does not open web UI
python manage.py drive  // does open web UI for settiong a maximum throttle value

X -> E-Stop (negative acceleration) Share -> change the mode [user, local, local_angle]

Enjoy!

press PS and hold for 10 s to turn it off

Training

python train.py --model 
   
    .h5 --tub 
     --type 
     
       --aug

     
   

Testing (nominal conditions)

For autonomus driving:

python manage.py drive --model [models/
   
    ]

   

Go to: http://10.21.13.35:8887/drive Select “Local Pilot (d)”

Testing (corrupted conditions)

python manage.py drive --model [models/
   
    ] [--corruption=
    
     ] [--severity=
     
      ] [--delay=
      
       ]

      
     
    
   

Testing (adversarial conditions)

python manage.py drive --model [models/
   
    ] [--useadversarial] [--advimage=
    
     ]  [--severity=
     
      ] [--delay=
      
       ]

      
     
    
   
Owner
Andrea Stocco
PostDoctoral researcher in Software Engineering. My interests concern devising techniques for testing web- and AI-based software systems.
Andrea Stocco
Lightweight mmm - Lightweight (Bayesian) Media Mix Model

Lightweight (Bayesian) Media Mix Model This is not an official Google product. L

Google 342 Jan 03, 2023
Code to reproduce the results in the paper "Tensor Component Analysis for Interpreting the Latent Space of GANs".

Tensor Component Analysis for Interpreting the Latent Space of GANs [ paper | project page ] Code to reproduce the results in the paper "Tensor Compon

James Oldfield 4 Jun 17, 2022
Randomized Correspondence Algorithm for Structural Image Editing

===================================== README: Inpainting based PatchMatch ===================================== @Author: Younesse ANDAM @Conta

Younesse 116 Dec 24, 2022
Music library streaming app written in Flask & VueJS

djtaytay This is a little toy app made to explore Vue, brush up on my Python, and make a remote music collection accessable through a web interface. I

Ryan Tasson 6 May 27, 2022
Social Network Ads Prediction

Social network advertising, also social media targeting, is a group of terms that are used to describe forms of online advertising that focus on social networking services.

Khazar 2 Jan 28, 2022
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022
CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary.

CUP-DNN CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary. The model was trained on the expre

1 Oct 27, 2021
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
This repository contains the implementation of the paper: "Towards Frequency-Based Explanation for Robust CNN"

RobustFreqCNN About This repository contains the implementation of the paper "Towards Frequency-Based Explanation for Robust CNN" arxiv. It primarly d

Sarosij Bose 2 Jan 23, 2022
This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Prediction Graph Neural Network Model for Bike Sharing Systems".

cluster-link-prediction This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Predict

Bárbara 0 Dec 28, 2022
MAME is a multi-purpose emulation framework.

MAME's purpose is to preserve decades of software history. As electronic technology continues to rush forward, MAME prevents this important "vintage" software from being lost and forgotten.

Michael Murray 6 Oct 25, 2020
Scaling and Benchmarking Self-Supervised Visual Representation Learning

FAIR Self-Supervision Benchmark is deprecated. Please see VISSL, a ground-up rewrite of benchmark in PyTorch. FAIR Self-Supervision Benchmark This cod

Meta Research 584 Dec 31, 2022
POCO: Point Convolution for Surface Reconstruction

POCO: Point Convolution for Surface Reconstruction by: Alexandre Boulch and Renaud Marlet Abstract Implicit neural networks have been successfully use

valeo.ai 93 Dec 29, 2022
Hypersim: A Photorealistic Synthetic Dataset for Holistic Indoor Scene Understanding

The Hypersim Dataset For many fundamental scene understanding tasks, it is difficult or impossible to obtain per-pixel ground truth labels from real i

Apple 1.3k Jan 04, 2023
Energy consumption estimation utilities for Jetson-based platforms

This repository contains a utility for measuring energy consumption when running various programs in NVIDIA Jetson-based platforms. Currently TX-2, NX, and AGX are supported.

OpenDR 10 Jun 17, 2022
Method for facial emotion recognition compitition of Xunfei and Datawhale .

人脸情绪识别挑战赛-第3名-W03KFgNOc-源代码、模型以及说明文档 队名:W03KFgNOc 排名:3 正确率: 0.75564 队员:yyMoming,xkwang,RichardoMu。 比赛链接:人脸情绪识别挑战赛 文章地址:link emotion 该项目分别训练八个模型并生成csv文

6 Oct 17, 2022
A curated list of automated deep learning (including neural architecture search and hyper-parameter optimization) resources.

Awesome AutoDL A curated list of automated deep learning related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awe

D-X-Y 2k Dec 30, 2022
Deep Residual Networks with 1K Layers

Deep Residual Networks with 1K Layers By Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Microsoft Research Asia (MSRA). Table of Contents Introduc

Kaiming He 856 Jan 06, 2023
基于Paddle框架的arcface复现

arcface-Paddle 基于Paddle框架的arcface复现 ArcFace-Paddle 本项目基于paddlepaddle框架复现ArcFace,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: InsightFace Padd

QuanHao Guo 16 Dec 15, 2022
Conversion between units used in magnetism

convmag Conversion between various units used in magnetism The conversions between base units available are: T - G : 1e4

0 Jul 15, 2021