Implementation of Sequence Generative Adversarial Nets with Policy Gradient

Related tags

Deep LearningSeqGAN
Overview

SeqGAN

Requirements:

  • Tensorflow r1.0.1
  • Python 2.7
  • CUDA 7.5+ (For GPU)

Introduction

Apply Generative Adversarial Nets to generating sequences of discrete tokens.

The illustration of SeqGAN. Left: D is trained over the real data and the generated data by G. Right: G is trained by policy gradient where the final reward signal is provided by D and is passed back to the intermediate action value via Monte Carlo search.

The research paper SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient has been accepted at the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17).

We provide example codes to repeat the synthetic data experiments with oracle evaluation mechanisms. To run the experiment with default parameters:

$ python sequence_gan.py

You can change the all the parameters in sequence_gan.py.

The experiment has two stages. In the first stage, use the positive data provided by the oracle model and Maximum Likelihood Estimation to perform supervise learning. In the second stage, use adversarial training to improve the generator.

After running the experiments, you could get the negative log-likelihodd performance saved in save/experiment-log.txt like:

pre-training...
epoch:	0	nll:	10.1716
epoch:	5	nll:	9.42939
epoch:	10	nll:	9.2388
epoch:	15	nll:	9.11899
epoch:	20	nll:	9.13099
epoch:	25	nll:	9.14474
epoch:	30	nll:	9.12539
epoch:	35	nll:	9.13982
epoch:	40	nll:	9.135
epoch:	45	nll:	9.13081
epoch:	50	nll:	9.10678
epoch:	55	nll:	9.10694
epoch:	60	nll:	9.10349
epoch:	65	nll:	9.10403
epoch:	70	nll:	9.07613
epoch:	75	nll:	9.091
epoch:	80	nll:	9.08909
epoch:	85	nll:	9.0807
epoch:	90	nll:	9.08434
epoch:	95	nll:	9.08936
epoch:	100	nll:	9.07443
epoch:	105	nll:	9.08305
epoch:	110	nll:	9.06973
epoch:	115	nll:	9.07058
adversarial training...
epoch:	0	nll:	9.08457
epoch:	5	nll:	9.04511
epoch:	10	nll:	9.03079
epoch:	15	nll:	8.99239
epoch:	20	nll:	8.96401
epoch:	25	nll:	8.93864
epoch:	30	nll:	8.91642
epoch:	35	nll:	8.87761
epoch:	40	nll:	8.88582
epoch:	45	nll:	8.8592
epoch:	50	nll:	8.83388
epoch:	55	nll:	8.81342
epoch:	60	nll:	8.80247
epoch:	65	nll:	8.77778
epoch:	70	nll:	8.7567
epoch:	75	nll:	8.73002
epoch:	80	nll:	8.72488
epoch:	85	nll:	8.72233
epoch:	90	nll:	8.71473
epoch:	95	nll:	8.71163
epoch:	100	nll:	8.70113
epoch:	105	nll:	8.69879
epoch:	110	nll:	8.69208
epoch:	115	nll:	8.69291
epoch:	120	nll:	8.68371
epoch:	125	nll:	8.689
epoch:	130	nll:	8.68989
epoch:	135	nll:	8.68269
epoch:	140	nll:	8.68647
epoch:	145	nll:	8.68066
epoch:	150	nll:	8.6832

Note: this code is based on the previous work by ofirnachum. Many thanks to ofirnachum.

Owner
Lantao Yu
Ph.D. Student at Stanford CS Department
Lantao Yu
Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Clay Mullis 82 Oct 13, 2022
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022
PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

五维空间 140 Nov 23, 2022
Zero-shot Learning by Generating Task-specific Adapters

Code for "Zero-shot Learning by Generating Task-specific Adapters" This is the repository containing code for "Zero-shot Learning by Generating Task-s

INK Lab @ USC 11 Dec 17, 2021
A tutorial on training a DarkNet YOLOv4 model for the CrowdHuman dataset

YOLOv4 CrowdHuman Tutorial This is a tutorial demonstrating how to train a YOLOv4 people detector using Darknet and the CrowdHuman dataset. Table of c

JK Jung 118 Nov 10, 2022
Official Repository for the paper "Improving Baselines in the Wild".

iWildCam and FMoW baselines (WILDS) This repository was originally forked from the official repository of WILDS datasets (commit 7e103ed) For general

Kazuki Irie 3 Nov 24, 2022
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models Requirements A suitable conda environment named ldm can be created and activated with: conda env create -f environment.yaml co

CompVis Heidelberg 5.6k Jan 04, 2023
Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification

Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification (ACDNE) This is a pytorch implementation of the Adv

陈志豪 8 Oct 13, 2022
Winners of DrivenData's Overhead Geopose Challenge

Winners of DrivenData's Overhead Geopose Challenge

DrivenData 22 Aug 04, 2022
This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability.

Delayed-cellular-neural-network This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability. There is als

4 Apr 28, 2022
Sleep staging from ECG, assisted with EEG

Sleep_Staging_Knowledge Distillation This codebase implements knowledge distillation approach for ECG based sleep staging assisted by EEG based sleep

2 Dec 12, 2022
Level Based Customer Segmentation

level_based_customer_segmentation Level Based Customer Segmentation Persona Veri Seti kullanılarak müşteri segmentasyonu yapılmıştır. KOLONLAR : PRICE

Buse Yıldırım 6 Dec 21, 2021
Code implementation for the paper 'Conditional Gaussian PAC-Bayes'.

CondGauss This repository contains PyTorch code for the paper Stochastic Gaussian PAC-Bayes. A novel PAC-Bayesian training method is implemented. Ther

0 Nov 01, 2021
PyTorch implementation for "Mining Latent Structures with Contrastive Modality Fusion for Multimedia Recommendation"

MIRCO PyTorch implementation for paper: Latent Structures Mining with Contrastive Modality Fusion for Multimedia Recommendation Dependencies Python 3.

Big Data and Multi-modal Computing Group, CRIPAC 9 Dec 08, 2022
Code release for Universal Domain Adaptation(CVPR 2019)

Universal Domain Adaptation Code release for Universal Domain Adaptation(CVPR 2019) Requirements python 3.6+ PyTorch 1.0 pip install -r requirements.t

THUML @ Tsinghua University 229 Dec 23, 2022
Graph Transformer Architecture. Source code for

Graph Transformer Architecture Source code for the paper "A Generalization of Transformer Networks to Graphs" by Vijay Prakash Dwivedi and Xavier Bres

NTU Graph Deep Learning Lab 561 Jan 08, 2023
Computer Vision application in the web

Computer Vision application in the web Preview Usage Clone this repo git clone https://github.com/amineHY/WebApp-Computer-Vision-streamlit.git cd Web

Amine Hadj-Youcef. PhD 35 Dec 06, 2022
Reading Group @mila-iqia on Computational Optimal Transport for Machine Learning Applications

Computational Optimal Transport for Machine Learning Reading Group Over the last few years, optimal transport (OT) has quickly become a central topic

Ali Harakeh 11 Aug 26, 2022
Brain tumor detection using CNN (InceptionResNetV2 Model)

Brain-Tumor-Detection Building a detection model using a convolutional neural network in Tensorflow & Keras. Used brain MRI images. InceptionResNetV2

1 Feb 13, 2022
Cross-lingual Transfer for Speech Processing using Acoustic Language Similarity

Cross-lingual Transfer for Speech Processing using Acoustic Language Similarity Indic TTS Samples can be found at https://peter-yh-wu.github.io/cross-

Peter Wu 1 Nov 12, 2022