Reaction SMILES-AA mapping via language modelling

Overview

rxn-aa-mapper

Reactions SMILES-AA sequence mapping

setup

conda env create -f conda.yml
conda activate rxn_aa_mapper

In the following we consider on examples provided to show how to use RXNAAMapper.

generate a vocabulary to be used with the EnzymaticReactionBertTokenizer

Create a vocabulary compatible with the enzymatic reaction tokenizer:

create-enzymatic-reaction-vocabulary ./examples/data-samples/biochemical ./examples/token_75K_min_600_max_750_500K.json /tmp/vocabulary.txt "*.csv"

use the tokenizer

Using the examples vocabulary and AA tokenizer provided, we can observe the enzymatic reaction tokenizer in action:

from rxn_aa_mapper.tokenization import EnzymaticReactionBertTokenizer

tokenizer = EnzymaticReactionBertTokenizer(
    vocabulary_file="./examples/vocabulary_token_75K_min_600_max_750_500K.txt",
    aa_sequence_tokenizer_filepath="./examples/token_75K_min_600_max_750_500K.json"
)
tokenizer.tokenize("NC(=O)c1ccc[n+]([C@@H]2O[[email protected]](COP(=O)(O)OP(=O)(O)OC[[email protected]]3O[C@@H](n4cnc5c(N)ncnc54)[[email protected]](O)[C@@H]3O)[C@@H](O)[[email protected]]2O)c1.O=C([O-])CC(C(=O)[O-])C(O)C(=O)[O-]|AGGVKTVTLIPGDGIGPEISAAVMKIFDAAKAPIQANVRPCVSIEGYKFNEMYLDTVCLNIETACFATIKCSDFTEEICREVAENCKDIK>>O=C([O-])CCC(=O)C(=O)[O-]")

train the model

The mlm-trainer script can be used to train a model via MTL:

mlm-trainer \
    ./examples/data-samples/biochemical ./examples/data-samples/biochemical \  # just a sample, simply split data in a train and a validation folder
    ./examples/vocabulary_token_75K_min_600_max_750_500K.txt /tmp/mlm-trainer-log \
    ./examples/sample-config.json "*.csv" 1 \  # for a more realistic config see ./examples/config.json
    ./examples/data-samples/organic ./examples/data-samples/organic \  # just a sample, simply split data in a train and a validation folder
    ./examples/token_75K_min_600_max_750_500K.json

Checkpoints will be stored in the /tmp/mlm-trainer-log for later usage in identification of active sites.

Those can be turned into an HuggingFace model by simply running:

checkpoint-to-hf-model /path/to/model.ckpt /tmp/rxnaamapper-pretrained-model ./examples/vocabulary_token_75K_min_600_max_750_500K.txt ./examples/sample-config.json ./examples/token_75K_min_600_max_750_500K.json

predict active site

The trained model can used to map reactant atoms to AA sequence locations that potentially represent the active site.

from rxn_aa_mapper.aa_mapper import RXNAAMapper

config_mapper = {
    "vocabulary_file": "./examples/vocabulary_token_75K_min_600_max_750_500K.txt",
    "aa_sequence_tokenizer_filepath": "./examples/token_75K_min_600_max_750_500K.json",
    "model_path": "/tmp/rxnaamapper-pretrained-model",
    "head": 3,
    "layers": [11],
    "top_k": 1,
}
mapper = RXNAAMapper(config=config_mapper)
mapper.get_reactant_aa_sequence_attention_guided_maps(["NC(=O)c1ccc[n+]([C@@H]2O[[email protected]](COP(=O)(O)OP(=O)(O)OC[[email protected]]3O[C@@H](n4cnc5c(N)ncnc54)[[email protected]](O)[C@@H]3O)[C@@H](O)[[email protected]]2O)c1.O=C([O-])CC(C(=O)[O-])C(O)C(=O)[O-]|AGGVKTVTLIPGDGIGPEISAAVMKIFDAAKAPIQANVRPCVSIEGYKFNEMYLDTVCLNIETACFATIKCSDFTEEICREVAENCKDIK>>O=C([O-])CCC(=O)C(=O)[O-]"])

citation

@article{dassi2021identification,
  title={Identification of Enzymatic Active Sites with Unsupervised Language Modeling},
  author={Dassi, Lo{\"\i}c Kwate and Manica, Matteo and Probst, Daniel and Schwaller, Philippe and Teukam, Yves Gaetan Nana and Laino, Teodoro},
  year={2021}
  conference={AI for Science: Mind the Gaps at NeurIPS 2021, ELLIS Machine Learning for Molecule Discovery Workshop 2021}
}
Detectron2-FC a fast construction platform of neural network algorithm based on detectron2

What is Detectron2-FC Detectron2-FC a fast construction platform of neural network algorithm based on detectron2. We have been working hard in two dir

董晋宗 9 Jun 06, 2022
Java and SHACL code commented in the paper "Towards compliance checking in reified I/O logic via SHACL" submitted to ICAIL 2021

shRIOL The subfolder shRIOL contains Java files to execute the SHACL files on the OWL ontology. To compile the Java files: "javac -cp ./src/;./lib/* -

1 Dec 06, 2022
Image-generation-baseline - MUGE Text To Image Generation Baseline

MUGE Text To Image Generation Baseline Requirements and Installation More detail

23 Oct 17, 2022
A tutorial on DataFrames.jl prepared for JuliaCon2021

JuliaCon2021 DataFrames.jl Tutorial This is a tutorial on DataFrames.jl prepared for JuliaCon2021. A video recording of the tutorial is available here

Bogumił Kamiński 106 Jan 09, 2023
PyTorch reimplementation of REALM and ORQA

PyTorch reimplementation of REALM and ORQA

Li-Huai (Allan) Lin 17 Aug 20, 2022
TensorFlow implementation of Elastic Weight Consolidation

Elastic weight consolidation Introduction A TensorFlow implementation of elastic weight consolidation as presented in Overcoming catastrophic forgetti

James Stokes 67 Oct 11, 2022
Towards uncontrained hand-object reconstruction from RGB videos

Towards uncontrained hand-object reconstruction from RGB videos Yana Hasson, Gül Varol, Ivan Laptev and Cordelia Schmid Project page Paper Table of Co

Yana 69 Dec 27, 2022
Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation

Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation Introduction ACoSP is an online pruning algorithm that compr

Merantix 8 Dec 07, 2022
This repository contains the code to replicate the analysis from the paper "Moving On - Investigating Inventors' Ethnic Origins Using Supervised Learning"

Replication Code for 'Moving On' - Investigating Inventors' Ethnic Origins Using Supervised Learning This repository contains the code to replicate th

Matthias Niggli 0 Jan 04, 2022
Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation.

Unified-EPT Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation. Installation Linux, CUDA=10.0,

29 Aug 23, 2022
Code for MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks

MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks This is the code for the paper: MentorNet: Learning Data-Driven Curriculum fo

Google 302 Dec 23, 2022
Parris, the automated infrastructure setup tool for machine learning algorithms.

README Parris, the automated infrastructure setup tool for machine learning algorithms. What Is This Tool? Parris is a tool for automating the trainin

Joseph Greene 319 Aug 02, 2022
Plugin for Gaffer providing direct acess to asset from PolyHaven.com. Only HDRIs at the moment, Cycles and Arnold supported

GafferHaven Plugin for Gaffer providing direct acess to asset from PolyHaven.com. Only HDRIs are supported at the moment, in Cycles and Arnold lights.

Jakub Vondra 6 Jan 26, 2022
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.

CSL-YOLO: A New Lightweight Object Detection System for Edge Computing This project provides a SOTA level lightweight YOLO called "Cross-Stage Lightwe

Miles Zhang 54 Dec 21, 2022
This respository includes implementations on Manifoldron: Direct Space Partition via Manifold Discovery

Manifoldron: Direct Space Partition via Manifold Discovery This respository includes implementations on Manifoldron: Direct Space Partition via Manifo

dayang_wang 4 Apr 28, 2022
Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources.

Illumination_Decomposition Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources. This code implements the

QAY 7 Nov 15, 2020
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
Official Implementation for "StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery" (ICCV 2021 Oral)

StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery (ICCV 2021 Oral) Run this model on Replicate Optimization: Global directions: Mapper: Check ou

3.3k Jan 05, 2023
DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos.

DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos A concise deep reinforcement learning libr

329 Jan 03, 2023
Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

Time2box Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

LingCai 4 Aug 23, 2022