The audio-video synchronization of MKV Container Format is exploited to achieve data hiding

Overview

1.0 Data Hiding in MKV Container Format

1.1 Brief Description

The audio-video synchronization of MKV Container Format is exploited to achieve data hiding, where the hidden data can be utilized for various management purposes, including hyper-linking, annotation, and authentication

1.2 Video Demonstration @ YouTube

Data Hiding (Hidden Watermark) in MKV Container Format

1.3 Requirements

  • Linux (not tested anywhere else)
  • Python
  • .MKV reader (like VLC player)
  • All the files are required:
    • .MKV video (./VideoForTesting/2mb.mkv)
    • ./convert_xml2mkv.py
    • ./parse_and_convert_mkv2xml.py
    • ./find_data.py
    • ./hide_data.py
    • ./find
    • ./hide
  • Ensure that you have all the permission to access these files. Run the following command: chmod +x convert_xml2mkv.py && chmod +x find_data.py && chmod +x hide_data.py && chmod +x parse_and_convert_mkv2xml.py
  • If the command above doesn't work and Linux prevents your access you may use the following command on any of the affected files: chmod +x filename.extension

1.4 How To Run Data Embedding Process

Note: for screenshots refer to the end of the ./Maxim_Zaika_Data_Hiding_in_MKV_Container.pdf file

  1. Ensure 1.3 Requirements are fulfilled
  2. Run ./hide from your terminal within the folder where files are located.
  3. Enter the name of the .MKV container: 2mb.mkv.
  4. Enter the data that needs to be hidden: 'example'. Write it down!
  5. Enter the SECRET KEY that will be used to decrypt your data in the data detecting process: 'encryption key'. Write it down!
  6. Enter the timecode where data will be saved to: 10.523 or type 'help' to display all the available timecodes. Write it down!
  7. File modified_mkv.mkv should now be created that stores your hidden data.

Note: do not lose text of the hidden data, SECRET KEY, and the timecode. Otherwise, you won't be able to verify it later.

1.5 How To Run Data Detecting Process

  1. Ensure 1.3 Requirements are fulfilled
  2. Run ./find from your terminal within the folder where files are located.
  3. Enter the file name: modified_mkv.mkv.
  4. Enter the text of your hidden data: 'example'.
  5. Enter the SECRET KEY used: 'encryption key'.
  6. Enter the timecode used: 10.523.
  7. If the data is matching then it will show a success.

2.0 Data Embedding Process

2.1 Software Architecture of Data Embedding

DataEmbeddingDesign

2.2 Data Embedding Design

DataEmbeddingDesign

2.3 Data Embedding Pseudocode

Note: this is incomplete representation.

Function main {
  Set a_word -> “word that needs to be written in”
  Set encryption_key -> “key used for the encryption”
  If (length of encryption_key) < (length of a_word) {
	  Set encryption_key -> same length as a_word
  }
  Set a_word -> convert to ascii
  Set encryption_key -> convert to ascii
  Set ascii_a_word -> convert to hexadecimal
  Set ascii_encryption_key -> convert to hexadecimal
  If (length of ascii_encryption_key) < (length of ascii_a_word) { 
	  Set ascii_encryption_key = -> same length as ascii_a_word
  }
  Encrypt a_word(ascii_a_word, ascii_encryption_key, a_word) // encrypt ascii word
                                                             // using original word 
  Convert encrypted word to hexadecimal // because MKV parser accepts hexadecimals
                                        // inside the cluster’s timecode
  Timecodes = [] // read the XML file and identify the timecodes
  Set input_timecode -> “input timecode here”
  Call function embed data (filename, input_timecode, encrypted_word_in_hexadecimal_format)
}

Function embed data {
	Loop through the file {
		Identify the location of the timecode {
			Identify the location of the data inside the cluster’s timecode {
				Write-in the data
			}
		} else not found timecode {
			Try again
		}
	}
}

3.0 Data Detecting Process

3.1 Software Architecture of Data Detecting

DataEmbeddingDesign

3.2 Data Detecting Design

DataEmbeddingDesign

3.3 Data Embedding Pseudocode

Note: this is incomplete representation.

Function detect data {
	Set hexadecimal_word -> ‘the encrypted word’ \\ basically the identical process like in data 
						                                    \\ hiding process
	Loop through the file {
		Loop each line of the file {
			Identify the location of the timecode {
				Identify the data inside the cluster’s timecode {
					Read through the line ignoring first 6 characters // format
				}
				If there is at least 1 miss-match {
					Return error
				} else fully matched {
					Return success
				}
			}
		}
	}
}

4.0 Results

Description Explanation
Limited Number of Cluster's Timecodes Modifying more than two cluster’s timecodes cause slight video distortion; however, modifying even more timecodes causes both video and audio distortions.
Embedding Capacity Passed test of up to 2,500 characters. Assumption is that 2,500 characters should be more than enough for the user.
File Size Increment Original file: 2.1 MB (2,097,641 bytes) -> Modified File (2,500 characters): 2.1 MB (2,122,058 bytes). Increased by 23,417 bytes (1.00%).

5.0 Additional Information

For more information (like testing and background information), refer to the .PDF file attached to this repository: ./Maxim_Zaika_Data_Hiding_in_MKV_Container.pdf

6.0 Credits

It would not be possible to complete this project without MKV > XML > MKV parser created by Vitaly "_Vi" Shukela: https://github.com/vi/mkvparse.

Parser is rewritten for my own needs (for better understanding) and included in this repository to ensure that there is no mismatch with Vitaly's version. If you are interested in the parser, please, refer to his repository provided above. I do not take any credit for its creation.

Owner
Maxim Zaika
Maxim Zaika
A project for developing transformer-based models for clinical relation extraction

Clinical Relation Extration with Transformers Aim This package is developed for researchers easily to use state-of-the-art transformers models for ext

uf-hobi-informatics-lab 101 Dec 19, 2022
An AI Assistant More Than a Toolkit

tymon An AI Assistant More Than a Toolkit The reason for creating framework tymon is simple. making AI more like an assistant, helping us to complete

TymonXie 46 Oct 24, 2022
This is the official pytorch implementation of AutoDebias, an automatic debiasing method for recommendation.

AutoDebias This is the official pytorch implementation of AutoDebias, a debiasing method for recommendation system. AutoDebias is proposed in the pape

Dong Hande 77 Nov 25, 2022
PoolFormer: MetaFormer is Actually What You Need for Vision

PoolFormer: MetaFormer is Actually What You Need for Vision (arXiv) This is a PyTorch implementation of PoolFormer proposed by our paper "MetaFormer i

Sea AI Lab 1k Dec 30, 2022
Simple cross-platform application for DaVinci surgical video frame annotation

About DaVid is a simple cross-platform GUI for annotating robotic and endoscopic surgical actions for use in deep-learning research. Features Simple a

Cyril Zakka 4 Oct 09, 2021
This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

ICCV Workshop 2021 VTGAN This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

Sharif Amit Kamran 25 Dec 08, 2022
Towards Implicit Text-Guided 3D Shape Generation (CVPR2022)

Towards Implicit Text-Guided 3D Shape Generation Towards Implicit Text-Guided 3D Shape Generation (CVPR2022) Code for the paper [Towards Implicit Text

55 Dec 16, 2022
Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

14 Nov 06, 2022
USAD - UnSupervised Anomaly Detection on multivariate time series

USAD - UnSupervised Anomaly Detection on multivariate time series Scripts and utility programs for implementing the USAD architecture. Implementation

116 Jan 04, 2023
RDA: Robust Domain Adaptation via Fourier Adversarial Attacking

RDA: Robust Domain Adaptation via Fourier Adversarial Attacking Updates 08/2021: check out our domain adaptation for video segmentation paper Domain A

17 Nov 30, 2022
YuNetのPythonでのONNX、TensorFlow-Lite推論サンプル

YuNet-ONNX-TFLite-Sample YuNetのPythonでのONNX、TensorFlow-Lite推論サンプルです。 TensorFlow-LiteモデルはPINTO0309/PINTO_model_zoo/144_YuNetのものを使用しています。 Requirement Op

KazuhitoTakahashi 8 Nov 17, 2021
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper

SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi

Nate Veldt 1 Nov 25, 2022
Teaching end to end workflow of deep learning

Deep-Education This repository is now available for public use for teaching end to end workflow of deep learning. This implies that learners/researche

Data Lab at College of William and Mary 2 Sep 26, 2022
alfred-py: A deep learning utility library for **human**

Alfred Alfred is command line tool for deep-learning usage. if you want split an video into image frames or combine frames into a single video, then a

JinTian 800 Jan 03, 2023
All the code and files related to the MI-Lab of UE19CS305 course in sem 5

Machine-Intelligence-Lab-CS305 The compilation of all the code an drelated files from MI-Lab UE19CS305 (of batch 2019-2023) offered by PES University

Arvind Krishna 3 Nov 10, 2022
BLEURT is a metric for Natural Language Generation based on transfer learning.

BLEURT: a Transfer Learning-Based Metric for Natural Language Generation BLEURT is an evaluation metric for Natural Language Generation. It takes a pa

Google Research 492 Jan 05, 2023
FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.

Detectron is deprecated. Please see detectron2, a ground-up rewrite of Detectron in PyTorch. Detectron Detectron is Facebook AI Research's software sy

Facebook Research 25.5k Jan 07, 2023
Code for "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds", CVPR 2021

PV-RAFT This repository contains the PyTorch implementation for paper "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clou

Yi Wei 43 Dec 05, 2022
Capstone-Project-2 - A game program written in the Python language

Capstone-Project-2 My Pygame Game Information: Description This Pygame project i

Nhlakanipho Khulekani Hlophe 1 Jan 04, 2022
This folder contains the implementation of the multi-relational attribute propagation algorithm.

MrAP This folder contains the implementation of the multi-relational attribute propagation algorithm. It requires the package pytorch-scatter. Please

6 Dec 06, 2022