Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Related tags

Deep LearningCARE
Overview

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

This repository is the official implementation of CARE. Graph

Updates

  • (09/10/2021) Our paper is accepted by NeurIPS 2021.

Requirements

To install requirements:

conda create -n care python=3.6
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch
pip install tensorboard
pip install ipdb
pip install einops
pip install loguru
pip install pyarrow==3.0.0
pip install tqdm

๐Ÿ“‹ Pytorch>=1.6 is needed for runing the code.

Data Preparation

Prepare the ImageNet data in {data_path}/train.lmdb and {data_path}/val.lmdb

Relpace the original data path in care/data/dataset_lmdb (Line7 and Line40) with your new {data_path}.

๐Ÿ“‹ Note that we use the lmdb file to speed-up the data-processing procedure.

Training

Before training the ResNet-50 (100 epoch) in the paper, run this command first to add your PYTHONPATH:

export PYTHONPATH=$PYTHONPATH:{your_code_path}/care/
export PYTHONPATH=$PYTHONPATH:{your_code_path}/care/care/

Then run the training code via:

bash run_train.sh      #(The training script is used for trianing CARE with 8 gpus)
bash single_gpu_train.sh    #(We also provide the script for trainig CARE with only one gpu)

๐Ÿ“‹ The training script is used to do unsupervised pre-training of a ResNet-50 model on ImageNet in an 8-gpu machine

  1. using -b to specify batch_size, e.g., -b 128
  2. using -d to specify gpu_id for training, e.g., -d 0-7
  3. using --log_path to specify the main folder for saving experimental results.
  4. using --experiment-name to specify the folder for saving training outputs.

The code base also supports for training other backbones (e.g., ResNet101 and ResNet152) with different training schedules (e.g., 200, 400 and 800 epochs).

Evaluation

Before start the evaluation, run this command first to add your PYTHONPATH:

export PYTHONPATH=$PYTHONPATH:{your_code_path}/care/
export PYTHONPATH=$PYTHONPATH:{your_code_path}/care/care/

Then, to evaluate the pre-trained model (e.g., ResNet50-100epoch) on ImageNet, run:

bash run_val.sh      #(The training script is used for evaluating CARE with 8 gpus)
bash debug_val.sh    #(We also provide the script for evaluating CARE with only one gpu)

๐Ÿ“‹ The training script is used to do the supervised linear evaluation of a ResNet-50 model on ImageNet in an 8-gpu machine

  1. using -b to specify batch_size, e.g., -b 128
  2. using -d to specify gpu_id for training, e.g., -d 0-7
  3. Modifying --log_path according to your own config.
  4. Modifying --experiment-name according to your own config.

Pre-trained Models

We here provide some pre-trained models in the [shared folder]:

Here are some examples.

  • [ResNet-50 100epoch] trained on ImageNet using ResNet-50 with 100 epochs.
  • [ResNet-50 200epoch] trained on ImageNet using ResNet-50 with 200 epochs.
  • [ResNet-50 400epoch] trained on ImageNet using ResNet-50 with 400 epochs.

More models are provided in the following model zoo part.

๐Ÿ“‹ We will provide more pretrained models in the future.

Model Zoo

Our model achieves the following performance on :

Self-supervised learning on image classifications.

Method Backbone epoch Top-1 Top-5 pretrained model linear evaluation model
CARE ResNet50 100 72.02% 90.02% [pretrained] (wip) [linear_model] (wip)
CARE ResNet50 200 73.78% 91.50% [pretrained] (wip) [linear_model] (wip)
CARE ResNet50 400 74.68% 91.97% [pretrained] (wip) [linear_model] (wip)
CARE ResNet50 800 75.56% 92.32% [pretrained] (wip) [linear_model] (wip)
CARE ResNet50(2x) 100 73.51% 91.66% [pretrained] (wip) [linear_model] (wip)
CARE ResNet50(2x) 200 75.00% 92.22% [pretrained] (wip) [linear_model] (wip)
CARE ResNet50(2x) 400 76.48% 92.99% [pretrained] (wip) [linear_model] (wip)
CARE ResNet50(2x) 800 77.04% 93.22% [pretrained] (wip) [linear_model] (wip)
CARE ResNet101 100 73.54% 91.63% [pretrained] (wip) [linear_model] (wip)
CARE ResNet101 200 75.89% 92.70% [pretrained] (wip) [linear_model] (wip)
CARE ResNet101 400 76.85% 93.31% [pretrained] (wip) [linear_model] (wip)
CARE ResNet101 800 77.23% 93.52% [pretrained] (wip) [linear_model] (wip)
CARE ResNet152 100 74.59% 92.09% [pretrained] (wip) [linear_model] (wip)
CARE ResNet152 200 76.58% 93.63% [pretrained] (wip) [linear_model] (wip)
CARE ResNet152 400 77.40% 93.63% [pretrained] (wip) [linear_model] (wip)
CARE ResNet152 800 78.11% 93.81% [pretrained] (wip) [linear_model] (wip)

Transfer learning to object detection and semantic segmentation.

COCO det

Method Backbone epoch AP_bb AP_50 AP_75 pretrained model det/seg model
CARE ResNet50 200 39.4 59.2 42.6 [pretrained] (wip) [model] (wip)
CARE ResNet50 400 39.6 59.4 42.9 [pretrained] (wip) [model] (wip)
CARE ResNet50-FPN 200 39.5 60.2 43.1 [pretrained] (wip) [model] (wip)
CARE ResNet50-FPN 400 39.8 60.5 43.5 [pretrained] (wip) [model] (wip)

COCO instance seg

Method Backbone epoch AP_mk AP_50 AP_75 pretrained model det/seg model
CARE ResNet50 200 34.6 56.1 36.8 [pretrained] (wip) [model] (wip)
CARE ResNet50 400 34.7 56.1 36.9 [pretrained] (wip) [model] (wip)
CARE ResNet50-FPN 200 35.9 57.2 38.5 [pretrained] (wip) [model] (wip)
CARE ResNet50-FPN 400 36.2 57.4 38.8 [pretrained] (wip) [model] (wip)

VOC07+12 det

Method Backbone epoch AP_bb AP_50 AP_75 pretrained model det/seg model
CARE ResNet50 200 57.7 83.0 64.5 [pretrained] (wip) [model] (wip)
CARE ResNet50 400 57.9 83.0 64.7 [pretrained] (wip) [model] (wip)

๐Ÿ“‹ More results are provided in the paper.

Contributing

๐Ÿ“‹ WIP

Owner
ChongjianGE
๐ŸŽฏ PhD in Computer Vision โ˜‘๏ธ MSc & BEng in Electrical Engineering
ChongjianGE
Disentangled Lifespan Face Synthesis

Disentangled Lifespan Face Synthesis Project Page | Paper Demo on Colab Preparation Please follow this github to prepare the environments and dataset.

ไฝ•ๆฃฎ 50 Sep 20, 2022
[ICLR 2022 Oral] F8Net: Fixed-Point 8-bit Only Multiplication for Network Quantization

F8Net Fixed-Point 8-bit Only Multiplication for Network Quantization (ICLR 2022 Oral) OpenReview | arXiv | PDF | Model Zoo | BibTex PyTorch implementa

Snap Research 76 Dec 13, 2022
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
The offcial repository for 'CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos', SIGIR2022

CharacterBERT-DR The offcial repository for CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos, Sh

ielab 11 Nov 15, 2022
House3D: A Rich and Realistic 3D Environment

House3D: A Rich and Realistic 3D Environment Yi Wu, Yuxin Wu, Georgia Gkioxari and Yuandong Tian House3D is a virtual 3D environment which consists of

Meta Research 1.1k Dec 14, 2022
This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper

DeepShift This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper, that aims to replace multiplicati

Mostafa Elhoushi 88 Dec 23, 2022
Improving the robustness and performance of biomedical NLP models through adversarial training

RobustBioNLP Improving the robustness and performance of biomedical NLP models through adversarial training In this repository you can find suppliment

Milad Moradi 3 Sep 20, 2022
Repository for code and dataset for our EMNLP 2021 paper - โ€œSo You Think Youโ€™re Funny?โ€: Rating the Humour Quotient in Standup Comedy.

AI-OpenMic Dataset The dataset is available for download via the follwing link. Repository for code and dataset for our EMNLP 2021 paper - โ€œSo You Thi

6 Oct 26, 2022
InterfaceGAN++: Exploring the limits of InterfaceGAN

InterfaceGAN++: Exploring the limits of InterfaceGAN Authors: Apavou Clรฉment & Belkada Younes From left to right - Images generated using styleGAN and

Younes Belkada 42 Dec 23, 2022
Local-Global Stratified Transformer for Efficient Video Recognition

DualFormer This repo is the implementation of our manuscript entitled "Local-Global Stratified Transformer for Efficient Video Recognition". Our model

Sea AI Lab 19 Dec 07, 2022
Ganilla - Official Pytorch implementation of GANILLA

GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe

Samet Hi 462 Dec 05, 2022
Curating a dataset for bioimage transfer learning

CytoImageNet A large-scale pretraining dataset for bioimage transfer learning. Motivation In past few decades, the increase in speed of data collectio

Stanley Z. Hua 9 Jun 20, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
Code for Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022)

Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022) We consider how a user of a web servi

joisino 20 Aug 21, 2022
deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and different optimization choices

deep_nn_model_with_only_python_100%_test_accuracy deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and differen

0 Aug 28, 2022
Official PyTorch Code of GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection (CVPR 2021)

GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Mo

Abhinav Kumar 76 Jan 02, 2023
Implementation of the famous Image Manipulation\Forgery Detector "ManTraNet" in Pytorch

Who has never met a forged picture on the web ? No one ! Everyday we are constantly facing fake pictures touched up in Photoshop but it is not always

Rony Abecidan 77 Dec 16, 2022
A cross-document event and entity coreference resolution system, trained and evaluated on the ECB+ corpus.

A Comprehensive Comparison of Word Embeddings in Event & Entity Coreference Resolution. Introduction This repo contains experimental code derived from

2 May 09, 2022
A program to recognize fruits on pictures or videos using yolov5

Yolov5 Fruits Detector Requirements Either Linux or Windows. We recommend Linux for better performance. Python 3.6+ and PyTorch 1.7+. Installation To

Fateme Zamanian 30 Jan 06, 2023
A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks. Thanks for NVlabs' excelle

K.L. 150 Dec 15, 2022