A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.

Overview

Alt Text

pyHype: Computational Fluid Dynamics in Python

pyHype is a Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids. It can be used as a solver to generate numerical predictions of 2D inviscid flow fields, or as a platform for developing new CFD techniques and methods. Contributions are welcome! pyHype is in early stages of development, I will be updating it regularly, along with its documentation.

The core idea behind pyHype is flexibility and modularity. pyHype offers a plug-n-play approach to CFD software, where every component of the CFD pipeline is modelled as a class with a set interface that allows it to communicate and interact with other components. This enables easy development of new components, since the developer does not have to worry about interfacing with other components. For example, if a developer is interested in developing a new approximate riemann solver technique, they only need to provide the implementation of the FluxFunction abstract class, without having to worry about how the rest of the code works in detail.

NEW: Geometry not alligned with the cartesian axes is now supported!
NEW: 60% efficiency improvement!
COMING UP: Examples of simulations on various airfoil geometries, and a presentation of the newly added mesh optimization techniques.
COMING UP: Examples of simulations on multi-block meshes.

Explosion Simulation

Here is an example of an explosion simulation performed on one block. The simulation was performed with the following:

  • 600 x 1200 cartesian grid
  • Roe approximate riemann solver
  • Venkatakrishnan flux limiter
  • Piecewise-Linear second order reconstruction
  • Green-Gauss gradient method
  • RK4 time stepping with CFL=0.8
  • Reflection boundary conditions

The example in given in the file examples/explosion.py. The file is as follows:

from pyHype.solvers import Euler2D

# Solver settings
settings = {'problem_type':             'explosion',
            'interface_interpolation':  'arithmetic_average',
            'reconstruction_type':      'conservative',
            'upwind_mode':              'primitive',
            'write_solution':           False,
            'write_solution_mode':      'every_n_timesteps',
            'write_solution_name':      'nozzle',
            'write_every_n_timesteps':  40,
            'CFL':                      0.8,
            't_final':                  0.07,
            'realplot':                 False,
            'profile':                  True,
            'gamma':                    1.4,
            'rho_inf':                  1.0,
            'a_inf':                    343.0,
            'R':                        287.0,
            'nx':                       600,
            'ny':                       1200,
            'nghost':                   1,
            'mesh_name':                'chamber'
            }

# Create solver
exp = Euler2D(fvm='SecondOrderPWL',
              gradient='GreenGauss',
              flux_function='Roe',
              limiter='Venkatakrishnan',
              integrator='RK4',
              settings=settings)

# Solve
exp.solve()

alt text

Double Mach Reflection (DMR)

Here is an example of a Mach 10 DMR simulation performed on five blocks. The simulation was performed with the following:

  • 500 x 500 cells per block
  • HLLL flux function
  • Venkatakrishnan flux limiter
  • Piecewise-Linear second order reconstruction
  • Green-Gauss gradient method
  • Strong-Stability-Preserving (SSP)-RK2 time stepping with CFL=0.4

The example in given in the file examples/dmr/dmr.py. The file is as follows:

from pyHype.solvers import Euler2D

# Solver settings
settings = {'problem_type':             'mach_reflection',
            'interface_interpolation':  'arithmetic_average',
            'reconstruction_type':      'conservative',
            'upwind_mode':              'conservative',
            'write_solution':           False,
            'write_solution_mode':      'every_n_timesteps',
            'write_solution_name':      'machref',
            'write_every_n_timesteps':  20,
            'plot_every':               10,
            'CFL':                      0.4,
            't_final':                  0.25,
            'realplot':                 True,
            'profile':                  False,
            'gamma':                    1.4,
            'rho_inf':                  1.0,
            'a_inf':                    1.0,
            'R':                        287.0,
            'nx':                       50,
            'ny':                       50,
            'nghost':                   1,
            'mesh_name':                'wedge_35_four_block',
            'BC_inlet_west_rho':        8.0,
            'BC_inlet_west_u':          8.25,
            'BC_inlet_west_v':          0.0,
            'BC_inlet_west_p':          116.5,
            }

# Create solver
exp = Euler2D(fvm='SecondOrderPWL',
              gradient='GreenGauss',
              flux_function='HLLL',
              limiter='Venkatakrishnan',
              integrator='RK2',
              settings=settings)

# Solve
exp.solve()

alt text

High Speed Jet

Here is an example of high-speed jet simulation performed on 5 blocks. The simulation was performed with the following:

  • Mach 2 flow
  • 100 x 1000 cell blocks
  • HLLL flux function
  • Venkatakrishnan flux limiter
  • Piecewise-Linear second order reconstruction
  • Green-Gauss gradient method
  • RK2 time stepping with CFL=0.4

The example in given in the file examples/jet/jet.py. The file is as follows:

from pyHype.solvers import Euler2D

# Solver settings
settings = {'problem_type':             'subsonic_rest',
            'interface_interpolation':  'arithmetic_average',
            'reconstruction_type':      'primitive',
            'upwind_mode':              'conservative',
            'write_solution':           True,
            'write_solution_mode':      'every_n_timesteps',
            'write_solution_name':      'kvi',
            'write_every_n_timesteps':  20,
            'plot_every':               10,
            'CFL':                      0.4,
            't_final':                  25.0,
            'realplot':                 False,
            'profile':                  False,
            'gamma':                    1.4,
            'rho_inf':                  1.0,
            'a_inf':                    1.0,
            'R':                        287.0,
            'nx':                       1000,
            'ny':                       100,
            'nghost':                   1,
            'mesh_name':                'jet',
            'BC_inlet_west_rho':        1.0,
            'BC_inlet_west_u':          0.25,
            'BC_inlet_west_v':          0.0,
            'BC_inlet_west_p':          2.0 / 1.4,
            }

# Create solver
exp = Euler2D(fvm='SecondOrderPWL',
              gradient='GreenGauss',
              flux_function='HLLL',
              limiter='Venkatakrishnan',
              integrator='RK2',
              settings=settings)

# Solve
exp.solve()

Mach Number: alt text

Density: alt text

Current work

  1. Integrate airfoil meshing and mesh optimization using elliptic PDEs
  2. Compile gradient and reconstruction calculations with numba
  3. Integrate PyTecPlot to use for writing solution files and plotting
  4. Implement riemann-invariant-based boundary conditions
  5. Implement subsonic and supersonic inlet and outlet boundary conditions
  6. Implement connectivity algorithms for calculating block connectivity and neighbor-finding
  7. Create a fully documented simple example to explain usage
  8. Documentation!!

Major future work

  1. Use MPI to distrubute computation to multiple processors
  2. Adaptive mesh refinement (maybe with Machine Learning :))
  3. Interactive gui for mesh design
  4. Advanced interactive plotting
Owner
Mohamed Khalil
Machine Learning, Data Science, Computational Fluid Dynamics, Aerospace Engineering
Mohamed Khalil
Object Detection using YOLO from PyImageSearch

Object Detection using YOLO from PyImageSearch By applying object detection, you’ll not only be able to determine what is in an image, but also where

Mohamed NIANG 1 Feb 09, 2022
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 06, 2023
HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021)

Code for HDR Video Reconstruction HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021) Guanying Chen, Cha

Guanying Chen 64 Nov 19, 2022
Pansharpening by convolutional neural networks in the full resolution framework

Z-PNN: Zoom Pansharpening Neural Network Pansharpening by convolutional neural networks in the full resolution framework is a deep learning method for

20 Nov 24, 2022
Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021)

L1-Refinement Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021) 🙈 A more detailed readme is co

Lincedo Lab 4 Jun 09, 2021
Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems"

Code Artifacts Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driv

Andrea Stocco 2 Aug 24, 2022
Official implementation of Representer Point Selection via Local Jacobian Expansion for Post-hoc Classifier Explanation of Deep Neural Networks and Ensemble Models at NeurIPS 2021

Representer Point Selection via Local Jacobian Expansion for Classifier Explanation of Deep Neural Networks and Ensemble Models This repository is the

Yi(Amy) Sui 2 Dec 01, 2021
Efficient 6-DoF Grasp Generation in Cluttered Scenes

Contact-GraspNet Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, Dieter

NVIDIA Research Projects 148 Dec 28, 2022
Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

2 Nov 15, 2021
unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier"

SquarePlus (Pytorch implement) unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier" SquarePlus Squareplus is a Softplus-L

SeeFun 3 Dec 29, 2021
This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation This is the code relat

39 Sep 23, 2022
Official implementation for: Blended Diffusion for Text-driven Editing of Natural Images.

Blended Diffusion for Text-driven Editing of Natural Images Blended Diffusion for Text-driven Editing of Natural Images Omri Avrahami, Dani Lischinski

328 Dec 30, 2022
Deep Learning Emotion decoding using EEG data from Autism individuals

Deep Learning Emotion decoding using EEG data from Autism individuals This repository includes the python and matlab codes using for processing EEG 2D

Juan Manuel Mayor Torres 12 Dec 08, 2022
Tool for live presentations using manim

manim-presentation Tool for live presentations using manim Install pip install manim-presentation opencv-python Usage Use the class Slide as your sce

Federico Galatolo 146 Jan 06, 2023
Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

281 Dec 09, 2022
Apache Spark - A unified analytics engine for large-scale data processing

Apache Spark Spark is a unified analytics engine for large-scale data processing. It provides high-level APIs in Scala, Java, Python, and R, and an op

The Apache Software Foundation 34.7k Jan 04, 2023
Machine learning notebooks in different subjects optimized to run in google collaboratory

Notebooks Name Description Category Link Training pix2pix This notebook shows a simple pipeline for training pix2pix on a simple dataset. Most of the

Zaid Alyafeai 363 Dec 06, 2022
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito

Andrew Conti 800 Dec 15, 2022
THIS IS THE **OLD** PYMC PROJECT. PLEASE USE PYMC3 INSTEAD:

Introduction Version: 2.3.8 Authors: Chris Fonnesbeck Anand Patil David Huard John Salvatier Web site: https://github.com/pymc-devs/pymc Documentation

PyMC 7.2k Jan 07, 2023
A PoC Corporation Relationship Knowledge Graph System on top of Nebula Graph.

Corp-Rel is a PoC of Corpartion Relationship Knowledge Graph System. It's built on top of the Open Source Graph Database: Nebula Graph with a dataset

Wey Gu 20 Dec 11, 2022