A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.

Overview

Alt Text

pyHype: Computational Fluid Dynamics in Python

pyHype is a Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids. It can be used as a solver to generate numerical predictions of 2D inviscid flow fields, or as a platform for developing new CFD techniques and methods. Contributions are welcome! pyHype is in early stages of development, I will be updating it regularly, along with its documentation.

The core idea behind pyHype is flexibility and modularity. pyHype offers a plug-n-play approach to CFD software, where every component of the CFD pipeline is modelled as a class with a set interface that allows it to communicate and interact with other components. This enables easy development of new components, since the developer does not have to worry about interfacing with other components. For example, if a developer is interested in developing a new approximate riemann solver technique, they only need to provide the implementation of the FluxFunction abstract class, without having to worry about how the rest of the code works in detail.

NEW: Geometry not alligned with the cartesian axes is now supported!
NEW: 60% efficiency improvement!
COMING UP: Examples of simulations on various airfoil geometries, and a presentation of the newly added mesh optimization techniques.
COMING UP: Examples of simulations on multi-block meshes.

Explosion Simulation

Here is an example of an explosion simulation performed on one block. The simulation was performed with the following:

  • 600 x 1200 cartesian grid
  • Roe approximate riemann solver
  • Venkatakrishnan flux limiter
  • Piecewise-Linear second order reconstruction
  • Green-Gauss gradient method
  • RK4 time stepping with CFL=0.8
  • Reflection boundary conditions

The example in given in the file examples/explosion.py. The file is as follows:

from pyHype.solvers import Euler2D

# Solver settings
settings = {'problem_type':             'explosion',
            'interface_interpolation':  'arithmetic_average',
            'reconstruction_type':      'conservative',
            'upwind_mode':              'primitive',
            'write_solution':           False,
            'write_solution_mode':      'every_n_timesteps',
            'write_solution_name':      'nozzle',
            'write_every_n_timesteps':  40,
            'CFL':                      0.8,
            't_final':                  0.07,
            'realplot':                 False,
            'profile':                  True,
            'gamma':                    1.4,
            'rho_inf':                  1.0,
            'a_inf':                    343.0,
            'R':                        287.0,
            'nx':                       600,
            'ny':                       1200,
            'nghost':                   1,
            'mesh_name':                'chamber'
            }

# Create solver
exp = Euler2D(fvm='SecondOrderPWL',
              gradient='GreenGauss',
              flux_function='Roe',
              limiter='Venkatakrishnan',
              integrator='RK4',
              settings=settings)

# Solve
exp.solve()

alt text

Double Mach Reflection (DMR)

Here is an example of a Mach 10 DMR simulation performed on five blocks. The simulation was performed with the following:

  • 500 x 500 cells per block
  • HLLL flux function
  • Venkatakrishnan flux limiter
  • Piecewise-Linear second order reconstruction
  • Green-Gauss gradient method
  • Strong-Stability-Preserving (SSP)-RK2 time stepping with CFL=0.4

The example in given in the file examples/dmr/dmr.py. The file is as follows:

from pyHype.solvers import Euler2D

# Solver settings
settings = {'problem_type':             'mach_reflection',
            'interface_interpolation':  'arithmetic_average',
            'reconstruction_type':      'conservative',
            'upwind_mode':              'conservative',
            'write_solution':           False,
            'write_solution_mode':      'every_n_timesteps',
            'write_solution_name':      'machref',
            'write_every_n_timesteps':  20,
            'plot_every':               10,
            'CFL':                      0.4,
            't_final':                  0.25,
            'realplot':                 True,
            'profile':                  False,
            'gamma':                    1.4,
            'rho_inf':                  1.0,
            'a_inf':                    1.0,
            'R':                        287.0,
            'nx':                       50,
            'ny':                       50,
            'nghost':                   1,
            'mesh_name':                'wedge_35_four_block',
            'BC_inlet_west_rho':        8.0,
            'BC_inlet_west_u':          8.25,
            'BC_inlet_west_v':          0.0,
            'BC_inlet_west_p':          116.5,
            }

# Create solver
exp = Euler2D(fvm='SecondOrderPWL',
              gradient='GreenGauss',
              flux_function='HLLL',
              limiter='Venkatakrishnan',
              integrator='RK2',
              settings=settings)

# Solve
exp.solve()

alt text

High Speed Jet

Here is an example of high-speed jet simulation performed on 5 blocks. The simulation was performed with the following:

  • Mach 2 flow
  • 100 x 1000 cell blocks
  • HLLL flux function
  • Venkatakrishnan flux limiter
  • Piecewise-Linear second order reconstruction
  • Green-Gauss gradient method
  • RK2 time stepping with CFL=0.4

The example in given in the file examples/jet/jet.py. The file is as follows:

from pyHype.solvers import Euler2D

# Solver settings
settings = {'problem_type':             'subsonic_rest',
            'interface_interpolation':  'arithmetic_average',
            'reconstruction_type':      'primitive',
            'upwind_mode':              'conservative',
            'write_solution':           True,
            'write_solution_mode':      'every_n_timesteps',
            'write_solution_name':      'kvi',
            'write_every_n_timesteps':  20,
            'plot_every':               10,
            'CFL':                      0.4,
            't_final':                  25.0,
            'realplot':                 False,
            'profile':                  False,
            'gamma':                    1.4,
            'rho_inf':                  1.0,
            'a_inf':                    1.0,
            'R':                        287.0,
            'nx':                       1000,
            'ny':                       100,
            'nghost':                   1,
            'mesh_name':                'jet',
            'BC_inlet_west_rho':        1.0,
            'BC_inlet_west_u':          0.25,
            'BC_inlet_west_v':          0.0,
            'BC_inlet_west_p':          2.0 / 1.4,
            }

# Create solver
exp = Euler2D(fvm='SecondOrderPWL',
              gradient='GreenGauss',
              flux_function='HLLL',
              limiter='Venkatakrishnan',
              integrator='RK2',
              settings=settings)

# Solve
exp.solve()

Mach Number: alt text

Density: alt text

Current work

  1. Integrate airfoil meshing and mesh optimization using elliptic PDEs
  2. Compile gradient and reconstruction calculations with numba
  3. Integrate PyTecPlot to use for writing solution files and plotting
  4. Implement riemann-invariant-based boundary conditions
  5. Implement subsonic and supersonic inlet and outlet boundary conditions
  6. Implement connectivity algorithms for calculating block connectivity and neighbor-finding
  7. Create a fully documented simple example to explain usage
  8. Documentation!!

Major future work

  1. Use MPI to distrubute computation to multiple processors
  2. Adaptive mesh refinement (maybe with Machine Learning :))
  3. Interactive gui for mesh design
  4. Advanced interactive plotting
Owner
Mohamed Khalil
Machine Learning, Data Science, Computational Fluid Dynamics, Aerospace Engineering
Mohamed Khalil
AAAI-22 paper: SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning

SimSR Code and dataset for the paper SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning (AAAI-22). Requirements We assum

7 Dec 19, 2022
This is a simple framework to make object detection dataset very quickly

FastAnnotation Table of contents General info Requirements Setup General info This is a simple framework to make object detection dataset very quickly

Serena Tetart 1 Jan 24, 2022
Simple implementation of Mobile-Former on Pytorch

Simple-implementation-of-Mobile-Former At present, only the model but no trained. There may be some bug in the code, and some details may be different

Acheung 103 Dec 31, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Dec 31, 2022
A real-time motion capture system that estimates poses and global translations using only 6 inertial measurement units

TransPose Code for our SIGGRAPH 2021 paper "TransPose: Real-time 3D Human Translation and Pose Estimation with Six Inertial Sensors". This repository

Xinyu Yi 261 Dec 31, 2022
Object detection, 3D detection, and pose estimation using center point detection:

Objects as Points Object detection, 3D detection, and pose estimation using center point detection: Objects as Points, Xingyi Zhou, Dequan Wang, Phili

Xingyi Zhou 6.7k Jan 03, 2023
HyperCube: Implicit Field Representations of Voxelized 3D Models

HyperCube: Implicit Field Representations of Voxelized 3D Models Authors: Magdalena Proszewska, Marcin Mazur, Tomasz Trzcinski, Przemysław Spurek [Pap

Magdalena Proszewska 3 Mar 09, 2022
Automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azure

fwhr-calc-website This project is to automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azur

SoohyunPark 1 Feb 07, 2022
Official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".

One-Shot Voice Conversion with Weight Adaptive Instance Normalization By Shengjie Huang, Yanyan Xu*, Dengfeng Ke*, Mingjie Chen, Thomas Hain. This rep

31 Dec 07, 2022
Official repository of the paper "GPR1200: A Benchmark for General-PurposeContent-Based Image Retrieval"

GPR1200 Dataset GPR1200: A Benchmark for General-Purpose Content-Based Image Retrieval (ArXiv) Konstantin Schall, Kai Uwe Barthel, Nico Hezel, Klaus J

Visual Computing Group 16 Nov 21, 2022
Official implementations of PSENet, PAN and PAN++.

News (2021/11/03) Paddle implementation of PAN, see Paddle-PANet. Thanks @simplify23. (2021/04/08) PSENet and PAN are included in MMOCR. Introduction

395 Dec 14, 2022
SegNet including indices pooling for Semantic Segmentation with tensorflow and keras

SegNet SegNet is a model of semantic segmentation based on Fully Comvolutional Network. This repository contains the implementation of learning and te

Yuta Kamikawa 172 Dec 23, 2022
Neighborhood Contrastive Learning for Novel Class Discovery

Neighborhood Contrastive Learning for Novel Class Discovery This repository contains the official implementation of our paper: Neighborhood Contrastiv

Zhun Zhong 56 Dec 09, 2022
Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

El Bruno 3 Mar 30, 2022
Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition

Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition Introduction Run attack: SGADV.py Objective function: foolbox/attacks/gradi

1 Jul 18, 2022
Hepsiburada - Hepsiburada Urun Bilgisi Cekme

Hepsiburada Urun Bilgisi Cekme from hepsiburada import Marka nike = Marka("nike"

Ilker Manap 8 Oct 26, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 02, 2023
Hyperparameter Optimization for TensorFlow, Keras and PyTorch

Hyperparameter Optimization for Keras Talos • Key Features • Examples • Install • Support • Docs • Issues • License • Download Talos radically changes

Autonomio 1.6k Dec 15, 2022
Sound Event Detection with FilterAugment

Sound Event Detection with FilterAugment Official implementation of Heavily Augmented Sound Event Detection utilizing Weak Predictions (DCASE2021 Chal

43 Aug 28, 2022
Self-supervised learning optimally robust representations for domain generalization.

OptDom: Learning Optimal Representations for Domain Generalization This repository contains the official implementation for Optimal Representations fo

Yangjun Ruan 18 Aug 25, 2022