Deep Learning Emotion decoding using EEG data from Autism individuals

Overview

Deep Learning Emotion decoding using EEG data from Autism individuals

This repository includes the python and matlab codes using for processing EEG 2D images on a customized Convolutional Neural Network (CNN) to decode emotion visual stimuli on individuals with and without Autism Spectrum Disorder (ASD).

If you would like to use this repository to replicate our experiments with this data or use your our own data, please cite the following paper, more details about this code and implementation are described there as well:

Mayor Torres, J.M. ¥, Clarkson, T.¥, Hauschild, K.M., Luhmann, C.C., Lerner, M.D., Riccardi, G., Facial emotions are accurately encoded in the brains of those with autism: A deep learning approach. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging,(2021).

Requirements

  • Tensorflow >= v1.20
  • sklearn
  • subprocess
  • numpy
  • csv
  • Matlab > R2018b

For the python code we provide:

1. A baseline code to evaluate a Leave-One-Trial-Out cross-validation from two csv files. One including all the trials for train with their corresponding labels and other with the test features of the single trial you want to evaluate. The test and train datafile should have an identifier to be paired by the for loop used for the cross validation. The code to run the baseline classifiier is located on the folder classifier_EEG_call.

Pipeline for EEG Emotion Decoding

To run the classifier pipeline simply download the .py files on the folder classifier_EEG_call and execute the following command on your bash prompt:

   python LOTO_lauch_emotions_test.py "data_path_file_including_train_test_files"

Please be sure your .csv files has a flattened time-points x channels EEG image after you remove artifacts and noise from the signal. Using the ADJUST EEGlab pipeline preferrably (https://sites.google.com/a/unitn.it/marcobuiatti/home/software/adjust).

The final results will be produced in a txt file in the output folder of your choice. Some metrics obtained from a sample of 88 ADOS-2 diagnosed participants 48 controls, and 40 ASD are the following:

Metrics/Groups FER CNN
Acc Pre Re F1 Acc Pre Re F1
TD 0.813 0.808 0.802 0.807 0.860 0.864 0.860 0.862
ASD* 0.776 0.774 0.768 0.771 0.934 0.935 0.933 0.934

Face Emotion Recognition (FER) task performance is denoted as the human performance obtained when labeling the same stimuli presented to obtain the EEG activity.

2. A code for using the package the iNNvestigate package (https://github.com/albermax/innvestigate) Saliency Maps and unify them from the LOTO crossvalidation mentioned in the first item. Code is located in the folder iNNvestigate_evaluation

To run the investigate evaluation simply download the .py files on the folder iNNvestigate_evaluation and execute the following command on your bash prompt:

   python LOTO_lauch_emotions_test_innvestigate.py "data_path_file_including_train_test_files" num_method

The value num_method is defined based on the order iNNvestigate package process saliency maps. For our specific case the number concordance is:

'Original Image'-> 0 'Gradient' -> 1 'SmoothGrad'-> 2 'DeconvNet' -> 3 'GuidedBackprop' -> 4 'PatterNet' -> 5 'PatternAttribution' -> 6 'DeepTaylor' -> 7 'Input * Gradient' -> 8 'Integrated Gradients' -> 9 'LRP-epsilon' -> 10 'LRP-Z' -> 11 'LRP-APresetflat' -> 12 'LRP-BPresetflat' -> 13

An example from saliency maps obtained from LRP-B preset are shown below ->

significant differences are observed on 750-1250 ms relative to the onset between the relevance of Controls and ASD groups!

alt text alt text alt text

For the Matlab code we provide the repository for reading the resulting output performance files for the CNN baseline classifier Reading_CNN_performances, and for the iNNvestigate methods using the same command call due to the output file is composed of the same syntax.

To run a performance checking first download the files on Reading_CNN_performances folder and run the following command on your Matlab prompt sign having the results the .csv files on a folder of your choice.

   read_perf_convnets_subjects('suffix_file','performance_data_path')
Owner
Juan Manuel Mayor Torres
I'm Research Associate in Cardiff University, UK. I'm interested in characterizing behavioral/neural outcome measures on neural representations using ML
Juan Manuel Mayor Torres
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Ryuichi Yamamoto 1.8k Jan 08, 2023
CLIP (Contrastive Language–Image Pre-training) for Italian

Italian CLIP CLIP (Radford et al., 2021) is a multimodal model that can learn to represent images and text jointly in the same space. In this project,

Italian CLIP 114 Dec 29, 2022
JupyterNotebook - C/C++, Javascript, HTML, LaTex, Shell scripts in Jupyter Notebook Also run them on remote computer

JupyterNotebook Read, write and execute C, C++, Javascript, Shell scripts, HTML, LaTex in jupyter notebook, And also execute them on remote computer R

1 Jan 09, 2022
DexterRedTool - Dexter's Red Team Tool that creates cronjob/task scheduler to consistently creates users

DexterRedTool Author: Dexter Delandro CSEC 473 - Spring 2022 This tool persisten

2 Feb 16, 2022
This project hosts the code for implementing the ISAL algorithm for object detection and image classification

Influence Selection for Active Learning (ISAL) This project hosts the code for implementing the ISAL algorithm for object detection and image classifi

25 Sep 11, 2022
A PyTorch implementation of the Transformer model in "Attention is All You Need".

Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V

Yu-Hsiang Huang 7.1k Jan 04, 2023
"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"

This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-

Khanh Nguyen 131 Oct 21, 2022
Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language (NeurIPS 2021)

VRDP (NeurIPS 2021) Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language Mingyu Ding, Zhenfang Chen, Tao Du, Pin

Mingyu Ding 36 Sep 20, 2022
PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision.

PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{CV2018, author = {Donny You ( Donny You 40 Sep 14, 2022

[NeurIPS 2021] Official implementation of paper "Learning to Simulate Self-driven Particles System with Coordinated Policy Optimization".

Code for Coordinated Policy Optimization Webpage | Code | Paper | Talk (English) | Talk (Chinese) Hi there! This is the source code of the paper “Lear

DeciForce: Crossroads of Machine Perception and Autonomy 81 Dec 19, 2022
ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information

ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information This repository contains code, model, dataset for ChineseBERT at ACL2021. Ch

413 Dec 01, 2022
Predicting a person's gender based on their weight and height

Logistic Regression Advanced Case Study Gender Classification: Predicting a person's gender based on their weight and height 1. Introduction We turn o

1 Feb 01, 2022
DeepMReye: magnetic resonance-based eye tracking using deep neural networks

DeepMReye: magnetic resonance-based eye tracking using deep neural networks

73 Dec 21, 2022
Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution

PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution [arXiv 2021].

Christoph Reich 122 Dec 12, 2022
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
PyTorch Implementations for DeeplabV3 and PSPNet

Pytorch-segmentation-toolbox DOC Pytorch code for semantic segmentation. This is a minimal code to run PSPnet and Deeplabv3 on Cityscape dataset. Shor

Zilong Huang 746 Dec 15, 2022
SysWhispers Shellcode Loader

Shhhloader Shhhloader is a SysWhispers Shellcode Loader that is currently a Work in Progress. It takes raw shellcode as input and compiles a C++ stub

icyguider 630 Jan 03, 2023
Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive

<a href=[email protected](SZ)"> 7 Dec 16, 2021
Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation"

CoCosNet Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation" (CVPR 2020 oral). Update: 202

Lingbo Yang 38 Sep 22, 2021