I will implement Fastai in each projects present in this repository.

Overview

DEEP LEARNING FOR CODERS WITH FASTAI AND PYTORCH

The repository contains a list of the projects which I have worked on while reading the book Deep Learning For Coders with Fastai and PyTorch.

📚 NOTEBOOKS:

1. INTRODUCTION

  • The Introduction notebook is a comprehensive notebook as it contains a list of projects such as Cat and Dog Classification, Semantic Segmentation, Sentiment Classification, Tabular Classification and Recommendation System.

2. MODEL PRODUCTION

  • The BearDetector notebook contains all the dependencies for a complete Image Classification project.

3. TRAINING A CLASSIFIER

  • The DigitClassifier notebook contains all the dependencies required for Image Classification project from scratch.

4. IMAGE CLASSIFICATION

  • The Image Classification notebook contains all the dependencies for Image Classification such as getting image data ready for modeling i.e presizing and data block summary and for fitting the model i.e learning rate finder, unfreezing, discriminative learning rates, setting the number of epochs and using deeper architectures. It has explanations of cross entropy loss function as well.

5. MULTILABEL CLASSIFICATION AND REGRESSION

  • The Multilabel Classification notebook contains all the dependencies required to understand Multilabel Classification. It contains the explanations of initializing DataBlock and DataLoaders. The Regression notebook contains all the dependencies required to understand Image Regression.

6. ADVANCED CLASSIFICATION

  • The Imagenette Classification notebook contains all the dependencies required to train a state of art machine learning model in computer vision whether from scratch or using transfer learning. It contains explanations and implementation of Normalization, Progressive Resizing, Test Time Augmentation, Mixup Augmentation and Label Smoothing.

7. COLLABORATIVE FILTERING

  • The Collaborative Filtering notebook contains all the dependencies required to build a Recommendation System. It presents how gradient descent can learn intrinsic factors or biases about items from a history of ratings which then gives information about the data.

8. TABULAR MODELING

  • The Tabular Model notebook contains all the dependencies required for Tabular Modeling. It presents the detailed explanations of two approaches to Tabular Modeling: Decision Tree Ensembles and Neural Networks.

9. NATURAL LANGUAGE PROCESSING

  • The NLP notebook contains all the dependencies required build Language Model that can generate texts and a Classifier Model that determines whether a review is positive or negative. It presents the state of art Classifier Model which is build using a pretrained language model and fine tuned it to the corpus of task. Then the Encoder model is used for classification.

10. DATA MUNGING

  • The DataMunging notebook contains all the dependencies required to implement mid level API of Fast.ai in Natural Language Processing and Computer Vision which provides greater flexibility to apply transformations on data items.

11. LANGUAGE MODEL FROM SCRATCH

  • The LanguageModel notebook contains all the dependencies that is inside AWD-LSTM architecture for Text Classification. It presents the implementation of Language Model using simple Linear Model, Recurrent Neural Network, Long Short Term Memory, Dropout Regularization and Activation Regularization.

12. CONVOLUTIONAL NEURAL NETWORK

  • The CNN notebook contains all the dependencies required to understand Convolutional Neural Networks. Convolutions are just a type of matrix multiplication with two constraints on the weight matrix: some elements are always zero and some elements are tied or forced to always have the same value.

13. RESIDUAL NETWORKS

  • The ResNets notebook contains all the dependencies required to understand the implementation of skip connections which allow deeper models to be trained. ResNet is the pretrained model when using Transfer Learning.

14. ARCHITECTURE DETAILS

  • The Architecture Details notebook contains all the dependencies required to create a complete state of art computer vision models. It presents some aspects of natural language processing as well.

15. TRAINING PROCESS

  • The Training notebook contains all the dependencies required to create a training loop and explored variants of Stochastic Gradient Descent.

16. NEURAL NETWORK FOUNDATIONS

  • The Neural Foundations notebook contains all the dependencies required to understand the foundations of deep learning, begining with matrix multiplication and moving on to implementing the forward and backward passes of a neural net from scratch.

17. CNN INTERPRETATION WITH CAM

  • The CNN Interpretation notebook presents the implementation of Class Activation Maps in model interpretation. Class activation maps give insights into why a model predicted a certain result by showing the areas of images that were most responsible for a given prediction.

18. FASTAI LEARNER FROM SCRATCH

  • The Fastai Learner notebook contains all the dependencies to understand the key concepts of Fastai.

19. CHEST X-RAYS CLASSIFICATION

20. TRANSFORMERS MODEL

Owner
Thinam Tamang
Machine Learning and Deep Learning
Thinam Tamang
Deep Convolutional Generative Adversarial Networks

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec Radford, Luke Metz, Soumith Chintala All images in t

Alec Radford 3.4k Dec 29, 2022
Reinforcement learning library in JAX.

Reinforcement learning library in JAX.

Yicheng Luo 96 Oct 30, 2022
The self-supervised goal reaching benchmark introduced in Discovering and Achieving Goals via World Models

Lexa-Benchmark Codebase for the self-supervised goal reaching benchmark introduced in 'Discovering and Achieving Goals via World Models'. Setup Create

1 Oct 14, 2021
Notification Triggers for Python

Notipyer Notification triggers for Python Send async email notifications via Python. Get updates/crashlogs from your scripts with ease. Installation p

Chirag Jain 17 May 16, 2022
SOTA easy to use PyTorch-based DL training library

Easily train or fine-tune SOTA computer vision models from one training repository. SuperGradients Introduction Welcome to SuperGradients, a free open

619 Jan 03, 2023
HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks

HiFiGAN Denoiser This is a Unofficial Pytorch implementation of the paper HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep F

Rishikesh (ऋषिकेश) 134 Dec 27, 2022
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations This repo contains official code for the NeurIPS 2021 paper Imi

Jiayao Zhang 2 Oct 18, 2021
An LSTM for time-series classification

Update 10-April-2017 And now it works with Python3 and Tensorflow 1.1.0 Update 02-Jan-2017 I updated this repo. Now it works with Tensorflow 0.12. In

Rob Romijnders 391 Dec 27, 2022
Milano is a tool for automating hyper-parameters search for your models on a backend of your choice.

Milano (This is a research project, not an official NVIDIA product.) Documentation https://nvidia.github.io/Milano Milano (Machine learning autotuner

NVIDIA Corporation 147 Dec 17, 2022
DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors

DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors By Anargyros Chatzitofis, Dimitris Zarpalas, Stefanos Kollias

tofis 24 Oct 08, 2022
Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features

Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features | paper | Official PyTorch implementation for Mul

48 Dec 28, 2022
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022
PantheonRL is a package for training and testing multi-agent reinforcement learning environments.

PantheonRL is a package for training and testing multi-agent reinforcement learning environments. PantheonRL supports cross-play, fine-tuning, ad-hoc coordination, and more.

Stanford Intelligent and Interactive Autonomous Systems Group 57 Dec 28, 2022
NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size

NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size Xuanyi Dong, Lu Liu, Katarzyna Musial, Bogdan Gabrys in IEEE Transactions o

D-X-Y 137 Dec 20, 2022
CVNets: A library for training computer vision networks

CVNets: A library for training computer vision networks This repository contains the source code for training computer vision models. Specifically, it

Apple 1.1k Jan 03, 2023
MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021)

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

2 Jan 29, 2022
Deep Reinforcement Learning based autonomous navigation for quadcopters using PPO algorithm.

PPO-based Autonomous Navigation for Quadcopters This repository contains an implementation of Proximal Policy Optimization (PPO) for autonomous naviga

Bilal Kabas 16 Nov 11, 2022
Generating Digital Painting Lighting Effects via RGB-space Geometry (SIGGRAPH2020/TOG2020)

Project PaintingLight PaintingLight is a project conducted by the Style2Paints team, aimed at finding a method to manipulate the illumination in digit

651 Dec 29, 2022
Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark

This dataset is a large-scale dataset for moving object detection and tracking in satellite videos, which consists of 40 satellite videos captured by Jilin-1 satellite platforms.

Qingyong 87 Dec 22, 2022
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022