BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training

Overview

BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training

By Likun Cai, Zhi Zhang, Yi Zhu, Li Zhang, Mu Li, Xiangyang Xue.

This repo is the official implementation of BigDetection. It is based on mmdetection and CBNetV2.

Introduction

We construct a new large-scale benchmark termed BigDetection. Our goal is to simply leverage the training data from existing datasets (LVIS, OpenImages and Object365) with carefully designed principles, and curate a larger dataset for improved detector pre-training. BigDetection dataset has 600 object categories and contains 3.4M training images with 36M object bounding boxes. We show some important statistics of BigDetection in the following figure.

Left: Number of images per category of BigDetection. Right: Number of instances in different object sizes.

Results and Models

BigDetection Validation

We show the evaluation results on BigDetection Validation. We hope BigDetection could serve as a new challenging benchmark for evaluating next-level object detection methods.

Method mAP (bigdet val) Links
YOLOv3 9.7 model/config
Deformable DETR 13.1 model/config
Faster R-CNN (C4)* 18.9 model
Faster R-CNN (FPN)* 19.4 model
CenterNet2* 23.1 model
Cascade R-CNN* 24.1 model
CBNetV2-Swin-Base 35.1 model/config

COCO Validation

We show the finetuning performance on COCO minival/test-dev. Results show that BigDetection pre-training provides significant benefits for different detector architectures. We achieve 59.8 mAP on COCO test-dev with a single model.

Method mAP (coco minival/test-dev) Links
YOLOv3 30.5/- config
Deformable DETR 39.9/- model/config
Faster R-CNN (C4)* 38.8/- model
Faster R-CNN (FPN)* 40.5/- model
CenterNet2* 45.3/- model
Cascade R-CNN* 45.1/- model
CBNetV2-Swin-Base 59.1/59.5 model/config
CBNetV2-Swin-Base (TTA) 59.5/59.8 config

Data Efficiency

We followed STAC and SoftTeacher to evaluate on COCO for different partial annotation settings.

Method mAP (1%) mAP (2%) mAP (5%) mAP (10%)
Baseline 9.8 14.3 21.2 26.2
STAC 14.0 18.3 24.4 28.6
SoftTeacher (ICCV 21) 20.5 26.5 30.7 34.0
Ours 25.3 28.1 31.9 34.1
model model model model

Notes

  • The models following * are implemented on another detection codebase Detectron2. Here we provide the pretrained checkpoints. The results can be reproduced following the installation of CenterNet2 codebase.
  • Most of models are trained for 8X schedule on BigDetection.
  • Most of pretrained models are finetuned for 1X schedule on COCO.
  • TTA denotes test time augmentation.
  • Pre-trained models of Swin Transformer can be downloaded from Swin Transformer for ImageNet Classification.

Getting Started

Requirements

  • Ubuntu 16.04
  • CUDA 10.2

Installation

# Create conda environment
conda create -n bigdet python=3.7 -y
conda activate bigdet

# Install Pytorch
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=10.2 -c pytorch

# Install mmcv
pip install mmcv-full==1.3.9 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html

# Clone and install
git clone https://github.com/amazon-research/bigdetection.git
cd bigdetection
pip install -r requirements/build.txt
pip install -v -e .

# Install Apex (optinal)
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Data Preparation

Our BigDetection involves 3 datasets and train/val data can be downloaded from their official website (Objects365, OpenImages v6, LVIS v1.0). All datasets should be placed under $bigdetection/data/ as below. The synsets (total 600 class names) of BigDetection dataset can be downloaded here: bigdetection_synsets. Contact us with [email protected] to get access to our pre-processed annotation files.

bigdetection/data
└── BigDetection
    ├── annotations
    │   ├── bigdet_obj_train.json
    │   ├── bigdet_oid_train.json
    │   ├── bigdet_lvis_train.json
    │   ├── bigdet_val.json
    │   └── cas_weights.json
    ├── train
    │   ├── Objects365
    │   ├── OpenImages
    │   └── LVIS
    └── val

Training

To train a detector with pre-trained models, run:

# multi-gpu training
tools/dist_train.sh <CONFIG_FILE> <GPU_NUM> --cfg-options load_from=<PRETRAIN_MODEL>

Pre-training

To pre-train a CBNetV2 with a Swin-Base backbone on BigDetection using 8 GPUs, run: (PRETRAIN_MODEL should be pre-trained checkpoint of Base-Swin-Transformer: model)

tools/dist_train.sh configs/BigDetection/cbnetv2/htc_cbv2_swin_base_giou_4conv1f_adamw_bigdet.py 8 \
    --cfg-options load_from=<PRETRAIN_MODEL>

To pre-train a Deformable-DETR with a ResNet-50 backbone on BigDetection, run:

tools/dist_train.sh configs/BigDetection/deformable_detr/deformable_detr_r50_16x2_8x_bigdet.py 8

Fine-tuning

To fine-tune a BigDetection pre-trained CBNetV2 (with Swin-Base backbone) on COCO, run: (PRETRAIN_MODEL should be BigDetection pre-trained checkpoint of CBNetV2: model)

tools/dist_train.sh configs/BigDetection/cbnetv2/htc_cbv2_swin_base_giou_4conv1f_adamw_20e_coco.py 8 \
    --cfg-options load_from=<PRETRAIN_MODEL>

Inference

To evaluate a detector with pre-trained checkpoints, run:

tools/dist_test.sh <CONFIG_FILE> <CHECKPOINT> <GPU_NUM> --eval bbox

BigDetection evaluation

To evaluate pre-trained CBNetV2 on BigDetection validation, run:

tools/dist_test.sh configs/BigDetection/cbnetv2/htc_cbv2_swin_base_giou_4conv1f_adamw_bigdet.py \
    <BIGDET_PRETRAIN_CHECKPOINT> 8 --eval bbox

COCO evaluation

To evaluate COCO-finetuned CBNetV2 on COCO validation, run:

# without test-time-augmentation
tools/dist_test.sh configs/BigDetection/cbnetv2/htc_cbv2_swin_base_giou_4conv1f_adamw_20e_coco.py \
    <COCO_FINETUNE_CHECKPOINT> 8 --eval bbox mask

# with test-time-augmentation
tools/dist_test.sh configs/BigDetection/cbnetv2/htc_cbv2_swin_base_giou_4conv1f_adamw_20e_coco_tta.py \
    <COCO_FINETUNE_CHECKPOINT> 8 --eval bbox mask

Other configuration based on Detectron2 can be found at detectron2-probject.

Citation

If you use our dataset or pretrained models in your research, please kindly consider to cite the following paper.

@article{bigdetection2022,
  title={BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training},
  author={Likun Cai and Zhi Zhang and Yi Zhu and Li Zhang and Mu Li and Xiangyang Xue},
  journal={arXiv preprint arXiv:2203.13249},
  year={2022}
}

Security

See CONTRIBUTING for more information.

License

This project is licensed under the Apache-2.0 License.

Acknowledgement

We thank the authors releasing mmdetection and CBNetv2 for object detection research community.

“Robust Lightweight Facial Expression Recognition Network with Label Distribution Training”, AAAI 2021.

EfficientFace Zengqun Zhao, Qingshan Liu, Feng Zhou. "Robust Lightweight Facial Expression Recognition Network with Label Distribution Training". AAAI

Zengqun Zhao 119 Jan 08, 2023
Image Recognition using Pytorch

PyTorch Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot practice and contributing in

Sarat Chinni 1 Nov 02, 2021
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

176 Jan 05, 2023
Awesome Long-Tailed Learning

Awesome Long-Tailed Learning This repo pays specially attention to the long-tailed distribution, where labels follow a long-tailed or power-law distri

Stomach_ache 284 Jan 06, 2023
M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images

M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images This repo is the official implementation of paper "M2MRF: Man

12 Dec 14, 2022
This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.

Multimodal Deep Learning 🎆 🎆 🎆 Announcing the multimodal deep learning repository that contains implementation of various deep learning-based model

Deep Cognition and Language Research (DeCLaRe) Lab 398 Dec 30, 2022
Combining Reinforcement Learning and Constraint Programming for Combinatorial Optimization

Hybrid solving process for combinatorial optimization problems Combinatorial optimization has found applications in numerous fields, from aerospace to

117 Dec 13, 2022
Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation This paper has been accepted and early accessed

Yun Liu 39 Sep 20, 2022
An AFL implementation with UnTracer (our coverage-guided tracer)

UnTracer-AFL This repository contains an implementation of our prototype coverage-guided tracing framework UnTracer in the popular coverage-guided fuz

113 Dec 17, 2022
GANmouflage: 3D Object Nondetection with Texture Fields

GANmouflage: 3D Object Nondetection with Texture Fields Rui Guo1 Jasmine Collins

29 Aug 10, 2022
Unofficial reimplementation of ECAPA-TDNN for speaker recognition (EER=0.86 for Vox1_O when train only in Vox2)

Introduction This repository contains my unofficial reimplementation of the standard ECAPA-TDNN, which is the speaker recognition in VoxCeleb2 dataset

Tao Ruijie 277 Dec 31, 2022
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The

Benedek Rozemberczki 188 Dec 29, 2022
Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021

Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021 Global Pooling, More than Meets the Eye: Posi

Md Amirul Islam 32 Apr 24, 2022
Unofficial implementation of "TTNet: Real-time temporal and spatial video analysis of table tennis" (CVPR 2020)

TTNet-Pytorch The implementation for the paper "TTNet: Real-time temporal and spatial video analysis of table tennis" An introduction of the project c

Nguyen Mau Dung 438 Dec 29, 2022
RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

The first comprehensive Robustness investigation benchmark on large-scale dataset ImageNet regarding ARchitecture design and Training techniques towards diverse noises.

132 Dec 23, 2022
PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

PERIN: Permutation-invariant Semantic Parsing David Samuel & Milan Straka Charles University Faculty of Mathematics and Physics Institute of Formal an

ÚFAL 40 Jan 04, 2023
Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Kim Seonghyeon 2.2k Jan 01, 2023
Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution

unfoldedVBA Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution This repository contains the Pytorch implementation of the unrolled

Yunshi HUANG 2 Jul 10, 2022
Notebooks for my "Deep Learning with TensorFlow 2 and Keras" course

Deep Learning with TensorFlow 2 and Keras – Notebooks This project accompanies my Deep Learning with TensorFlow 2 and Keras trainings. It contains the

Aurélien Geron 1.9k Dec 15, 2022