A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Overview


PyPI Version Docs Status Repo size Code Coverage Build Status Arxiv

Documentation | External Resources | Research Paper

Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble.

The library consists of various methods to compute (approximate) the Shapley value of players (models) in weighted voting games (ensemble games) - a class of transferable utility cooperative games. We covered the exact enumeration based computation and various widely know approximation methods from economics and computer science research papers. There are also functionalities to identify the heterogeneity of the player pool based on the Shapley entropy. In addition, the framework comes with a detailed documentation, an intuitive tutorial, 100% test coverage and illustrative toy examples.


Citing

If you find Shapley useful in your research please consider adding the following citation:

@misc{rozemberczki2021shapley,
      title = {{The Shapley Value of Classifiers in Ensemble Games}}, 
      author = {Benedek Rozemberczki and Rik Sarkar},
      year = {2021},
      eprint = {2101.02153},
      archivePrefix = {arXiv},
      primaryClass = {cs.LG}
}

A simple example

Shapley makes solving voting games quite easy - see the accompanying tutorial. For example, this is all it takes to solve a weighted voting game with defined on the fly with permutation sampling:

import numpy as np
from shapley import PermutationSampler

W = np.random.uniform(0, 1, (1, 7))
W = W/W.sum()
q = 0.5

solver = PermutationSampler()
solver.solve_game(W, q)
shapley_values = solver.get_solution()

Methods Included

In detail, the following methods can be used.


Head over to our documentation to find out more about installation, creation of datasets and a full list of implemented methods and available datasets. For a quick start, check out the examples in the examples/ directory.

If you notice anything unexpected, please open an issue. If you are missing a specific method, feel free to open a feature request.


Installation

$ pip install shapley

Running tests

$ python setup.py test

Running examples

$ cd examples
$ python permutation_sampler_example.py

License

You might also like...
Scripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification
Scripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification

About subwAI subwAI - a project for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation

The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Neural Ensemble Search for Performant and Calibrated Predictions
Neural Ensemble Search for Performant and Calibrated Predictions

Neural Ensemble Search Introduction This repo contains the code accompanying the paper: Neural Ensemble Search for Performant and Calibrated Predictio

 An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)
An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

zeus is a Python implementation of the Ensemble Slice Sampling method.
zeus is a Python implementation of the Ensemble Slice Sampling method.

zeus is a Python implementation of the Ensemble Slice Sampling method. Fast & Robust Bayesian Inference, Efficient Markov Chain Monte Carlo (MCMC), Bl

Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation
Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation

SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation Efficient Self-Ensemble Framework for Semantic Segmentation by Walid Bousselham

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning
Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning This repository is official Tensorflow implementation of paper: Ensemb

Using Hotel Data to predict High Value And Potential VIP Guests
Using Hotel Data to predict High Value And Potential VIP Guests

Description Using hotel data and AI to predict high value guests and potential VIP guests. Hotel can leverage on prediction resutls to run more effect

A Simple Key-Value Data-store written in Python

mercury-db This is a File Based Key-Value Datastore that supports basic CRUD (Create, Read, Update, Delete) operations developed using Python. The dat

Comments
  • Error in running MLE example

    Error in running MLE example

    Thank you for sharing your great work. I truly enjoyed reading it. However, I met an error when I tried the example. It seems to be fine for the MC example.

    $ python multilinear_extension_example.py RuntimeWarning: invalid value encountered in true_divide self._Phi = self._Phi / np.sum(self._Phi, axis=1).reshape(-1, 1) Traceback (most recent call last): File "multilinear_extension_example.py", line 11, in solver.solve_game(W, q) File "/lib/python3.6/site-packages/shapley/solvers/multilinear_extension.py", line 34, in solve_game self._run_sanity_check(W, self._Phi) File "/lib/python3.6/site-packages/shapley/solution_concept.py", line 28, in _run_sanity_check self._verify_distribution(Phi) File "/lib/python3.6/site-packages/shapley/solution_concept.py", line 22, in _verify_distribution assert np.sum(Phi) - Phi.shape[0] < 0.001 AssertionError

    opened by xxlya 2
Releases(v_10003)
Owner
Benedek Rozemberczki
PhD candidate at The University of Edinburgh @cdt-data-science working on machine learning and data mining related to graph structured data.
Benedek Rozemberczki
CCNet: Criss-Cross Attention for Semantic Segmentation (TPAMI 2020 & ICCV 2019).

CCNet: Criss-Cross Attention for Semantic Segmentation Paper Links: Our most recent TPAMI version with improvements and extensions (Earlier ICCV versi

Zilong Huang 1.3k Dec 27, 2022
OpenDelta - An Open-Source Framework for Paramter Efficient Tuning.

OpenDelta is a toolkit for parameter efficient methods (we dub it as delta tuning), by which users could flexibly assign (or add) a small amount parameters to update while keeping the most paramters

THUNLP 386 Dec 26, 2022
Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection

Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection abstract:Unlike 2D object detection where all RoI featur

DK. Zhang 2 Oct 07, 2022
A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images

BaSiC Matlab code accompanying A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images by Tingying Peng, Kurt Thorn, Timm Schr

Marr Lab 34 Dec 18, 2022
A PyTorch port of the Neural 3D Mesh Renderer

Neural 3D Mesh Renderer (CVPR 2018) This repo contains a PyTorch implementation of the paper Neural 3D Mesh Renderer by Hiroharu Kato, Yoshitaka Ushik

Daniilidis Group University of Pennsylvania 1k Jan 09, 2023
Link prediction using Multiple Order Local Information (MOLI)

Understanding the network formation pattern for better link prediction Authors: [e

Wu Lab 0 Oct 18, 2021
Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user who joins your server.

Discord-Protect Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user wh

Tir Omar 2 Oct 28, 2021
AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning

AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning AutoPentest-DRL is an automated penetration testing framework based o

Cyber Range Organization and Design Chair 217 Jan 01, 2023
Continual learning with sketched Jacobian approximations

Continual learning with sketched Jacobian approximations This repository contains the code for reproducing figures and results in the paper ``Provable

Machine Learning and Information Processing Laboratory 1 Jun 30, 2022
Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Neural Networks.

Dynamic-Graphs-Construction Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Ne

11 Dec 14, 2022
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

DeepMind 892 Dec 28, 2022
Machine Learning in Asset Management (by @firmai)

Machine Learning in Asset Management If you like this type of content then visit ML Quant site below: https://www.ml-quant.com/ Part One Follow this l

Derek Snow 1.5k Jan 02, 2023
Implementation of U-Net and SegNet for building segmentation

Specialized project Created by Katrine Nguyen and Martin Wangen-Eriksen as a part of our specialized project at Norwegian University of Science and Te

Martin.w-e 3 Dec 07, 2022
This repository contains the code for our paper VDA (public in EMNLP2021 main conference)

Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models This repository contains the code for our paper VDA (publ

RUCAIBox 13 Aug 06, 2022
​TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.

TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch

Microsoft 983 Dec 23, 2022
Unpaired Caricature Generation with Multiple Exaggerations

CariMe-pytorch The official pytorch implementation of the paper "CariMe: Unpaired Caricature Generation with Multiple Exaggerations" CariMe: Unpaired

Gu Zheng 37 Dec 30, 2022
MacroTools provides a library of tools for working with Julia code and expressions.

MacroTools.jl MacroTools provides a library of tools for working with Julia code and expressions. This includes a powerful template-matching system an

FluxML 278 Dec 11, 2022
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
Codes for "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation"

CSDI This is the github repository for the NeurIPS 2021 paper "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation

106 Jan 04, 2023
A multilingual version of MS MARCO passage ranking dataset

mMARCO A multilingual version of MS MARCO passage ranking dataset This repository presents a neural machine translation-based method for translating t

75 Dec 27, 2022