Neural Ensemble Search for Performant and Calibrated Predictions

Related tags

Deep Learningnes
Overview

Neural Ensemble Search

Introduction

This repo contains the code accompanying the paper:

Neural Ensemble Search for Performant and Calibrated Predictions

Authors: Sheheryar Zaidi*, Arber Zela*, Thomas Elsken, Chris Holmes, Frank Hutter and Yee Whye Teh.

The paper introduces two NES algorithms for finding ensembles with varying baselearner architectures with the aim of producing performant and calibrated predictions for both in-distribution data and during distributional shift.

The code, as provided here, makes use of the SLURM job scheduler, however, one should be able to make changes to run the code without SLURM.

News: Oral presentation at the Uncertainty & Robustness in Deep Learning (UDL) Workshop @ ICML 2020

Setting up virtual environment

First, clone and cd to the root of repo:

git clone https://github.com/automl/nes.git
cd nes

We used Python 3.6 and PyTorch 1.3.1 with CUDA 10.0 (see requirements.txt) for running our experiments. For reproducibility, we recommend using these python and CUDA versions. To set up the virtual environment execute the following (python points to Python 3.6):

python -m venv venv

Then, activate the environment using:

source venv/bin/activate

Now install requirements.txt packages by:

pip install -r requirements.txt -f https://download.pytorch.org/whl/torch_stable.html

Generating the CIFAR-10-C dataset

To run the experiments on CIFAR-10-C (Hendrycks and Dietterich, ICLR 2019), first generate the shifted data. Begin by downloading the CIFAR-10 dataset by executing the following command:

python -c "import torchvision.datasets as dset; dset.CIFAR10(\"data\", train=True, download=True)"

Next, run the cluster_scripts/generate_corrupted.sh script to generate the shifted data using the command:

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/generate_corrupted.sh

$GPU_CLUSTER_PARTITION is the name of the cluster partition you want to submit the array job to.

To run this without SLURM, use the following command which runs sequentially rather than in parallel:

for i in 0..18; do PYTHONPATH=$PWD python data/generate_corrupted.py $i; done

Running the experiments

The structure for running the two Neural Ensemble Search (NES) algorithms, NES-RS and NES-RE consists of three steps: train the base learners, apply ensemble selection and evaluate the final ensembles. We compared to three deep ensemble baselines: DeepEns (RS), DeepEns (DARTS) and DeepEns(AmoebaNet). The latter two simply require training the baselearners and evaluating the ensemble. For DeepEns (RS), we require an extra intermediate step of picking the "incumbent" architecture (i.e. best architecture by validation loss) from a randomly sampled pool of architectures. For a fair and efficient comparison, we use the same randomly sampled (and trained) pool of architectures used by NES-RS.

Running NES

We describe how to run NES algorithms for CIFAR-10-C using the scripts in cluster_scripts/cifar10/; for Fashion-MNIST, proceed similarly but using the scripts in cluster_scripts/fmnist/. For NES algorithms, we first train the base learners in parallel by the commands:

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/nes_rs.sh (NES-RS)

and

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/nes_re.sh (NES-RE)

These scripts will run the NES search for 400 iterations using the same hyperparameters as described in the paper to build the pools of base learners. All baselearners (trained network parameters, predictions across all severity levels, etc.) will be saved in experiments/cifar10/baselearners/ (experiments/fmnist/baselearners/ for Fashion-MNIST).

Next, we perform ensemble selection given the pools built by NES-RS and NES-RE using the command:

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/ensembles_from_pools.sh

We will return to the final step of ensemble evaluation.

Running Deep Ensemble Baselines

To run the deep ensemble baselines DeepEns (AmoebaNet) and DeepEns (DARTS), we first train the base learners in parallel using the scripts:

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/deepens_amoeba.sh (DeepEns-AmoebaNet)

and

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/deepens_darts.sh (DeepEns-DARTS)

These will train the DARTS and AmoebaNet architectures with different random initializations and save the results again in experiments/cifar10/baselearners/.

To run DeepEns-RS, we first have to extract the incumbent architectures from the random sample produced by the NES-RS run above. For that, run:

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/get_incumbents_rs.sh

which saves incumbent architecture ids in experiments/cifar10/outputs/deepens_rs/incumbents.txt. Then run the following loop to train multiple random initializations of each of the incumbent architectures:

for arch_id in $(cat < experiments/cifar10/outputs/deepens_rs/incumbents.txt); do sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/deepens_rs.sh $arch_id; done

Evaluating the Ensembles

When all the runs above are complete, all base learners are trained, and we can evaluate all the ensembles (on in-distribution and shifted data). To do that, run the command:

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/evaluate_ensembles.sh

Plotting the results

Finally, after all the aforementioned steps have been completed, we plot the results by running:

bash cluster_scripts/cifar10/plot_data.sh

This will save the plots in experiments/cifar10/outputs/plots.

Figures from the paper

Results on Fashion-MNIST: Loss fmnist

NES with Regularized Evolution: nes-re

For more details, please refer to the original paper.

Citation

@article{zaidi20,
  author  = {Sheheryar Zaidi and Arber Zela and Thomas Elsken and Chris Holmes and Frank Hutter and Yee Whye Teh},
  title   = {{Neural} {Ensemble} {Search} for {Performant} and {Calibrated} {Predictions}},
  journal = {arXiv:2006.08573 {cs.LG}},
  year    = {2020},
  month   = jun,
}
Owner
AutoML-Freiburg-Hannover
AutoML-Freiburg-Hannover
Unofficial implementation of Pix2SEQ

Unofficial-Pix2seq: A Language Modeling Framework for Object Detection Unofficial implementation of Pix2SEQ. Please use this code with causion. Many i

159 Dec 12, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper

TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I

Phil Wang 146 Dec 06, 2022
KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

80 Dec 27, 2022
A more easy-to-use implementation of KPConv based on PyTorch.

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 36 Dec 29, 2022
Human segmentation models, training/inference code, and trained weights, implemented in PyTorch

Human-Segmentation-PyTorch Human segmentation models, training/inference code, and trained weights, implemented in PyTorch. Supported networks UNet: b

Thuy Ng 474 Dec 19, 2022
Hcaptcha-challenger - Gracefully face hCaptcha challenge with Yolov5(ONNX) embedded solution

hCaptcha Challenger 🚀 Gracefully face hCaptcha challenge with Yolov5(ONNX) embe

593 Jan 03, 2023
An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Uformer: A General U-Shaped Transformer for Image Restoration Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu Paper: https://arxiv.org/abs

Zhendong Wang 497 Dec 22, 2022
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Emile van Krieken 140 Dec 30, 2022
Banglore House Prediction Using Flask Server (Python)

Banglore House Prediction Using Flask Server (Python) 🌐 Links 🌐 📂 Repo In this repository, I've implemented a Machine Learning-based Bangalore Hous

Dhyan Shah 1 Jan 24, 2022
Decorators for maximizing memory utilization with PyTorch & CUDA

torch-max-mem This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and

Max Berrendorf 10 May 02, 2022
SimDeblur is a simple framework for image and video deblurring, implemented by PyTorch

SimDeblur (Simple Deblurring) is an open source framework for image and video deblurring toolbox based on PyTorch, which contains most deep-learning based state-of-the-art deblurring algorithms. It i

220 Jan 07, 2023
Corruption Invariant Learning for Re-identification

Corruption Invariant Learning for Re-identification The official repository for Benchmarks for Corruption Invariant Person Re-identification (NeurIPS

Minghui Chen 73 Dec 08, 2022
Official code for "Focal Self-attention for Local-Global Interactions in Vision Transformers"

Focal Transformer This is the official implementation of our Focal Transformer -- "Focal Self-attention for Local-Global Interactions in Vision Transf

Microsoft 486 Dec 20, 2022
InferPy: Deep Probabilistic Modeling with Tensorflow Made Easy

InferPy: Deep Probabilistic Modeling Made Easy InferPy is a high-level API for probabilistic modeling written in Python and capable of running on top

PGM-Lab 141 Oct 13, 2022
A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.

chitra What is chitra? chitra (चित्र) is a multi-functional library for full-stack Deep Learning. It simplifies Model Building, API development, and M

Aniket Maurya 210 Dec 21, 2022
Decision Transformer: A brand new Offline RL Pattern

DecisionTransformer_StepbyStep Intro Decision Transformer: A brand new Offline RL Pattern. 这是关于NeurIPS 2021 热门论文Decision Transformer的复现。 👍 原文地址: Deci

Irving 14 Nov 22, 2022
Voice Gender Recognition

In this project it was used some different Machine Learning models to identify the gender of a voice (Female or Male) based on some specific speech and voice attributes.

Anne Livia 1 Jan 27, 2022
A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization

sam.pytorch A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization ( Foret+2020) Paper, Official implementa

Ryuichiro Hataya 102 Dec 28, 2022
FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction

FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction. It uses a customized encoder decoder architecture with spatio-temporal convolutions and channel ga

Tarun K 280 Dec 23, 2022