Decision Transformer: A brand new Offline RL Pattern

Overview

DecisionTransformer_StepbyStep

Intro

Decision Transformer: A brand new Offline RL Pattern.

这是关于NeurIPS 2021 热门论文Decision Transformer的复现。

👍 原文地址: Decision Transformer: Reinforcement Learning via Sequence Modeling

👍 官方的Git仓库: decision-transformer(official)

Decision Transformer

Decision Transformer属于Offline RL,所谓Offline RL,即从次优数据中学习策略来分配Agent,即从固定、有限的经验中产生最大有效的行为。

👀️ Motivation

DT将RL看成一个序列建模问题(Sequence Modeling Problem ),不用传统RL方法,而使用网络直接输出动作进行决策。传统RL方法存在一些问题,比如估计未来Return过程中Bootstrapping过程会导致Overestimate; 马尔可夫假设;

DT借助了Transformer的强大表征能力和时序建模能力。

  • Decision Transformer的表现达到甚至超过了目前最好的基于dynamic programming的主流方法;
  • 在一些需要long-term credit assignment的task【例如sparse reward或者delayed reward等】,Decision Transformer的表现远超过了最好的主流方法.

🚀️ DT的核心思想

image.png

Decision Transformer的核心思想; States、Actions、Returns被Fed into Modality-Specific的线性Embedding;并添加了带有时间步信息的positional episodic timestep; 这些Tokens被输入一个GPT架构,使用a causal self-attention mask来预测actions。

🎉️ DT的优势

  1. 无需Markov假设;
  2. 没有使用一个可学习的Value Function作为Training Target;
  3. 利用Transformer的特性,绕过长期信用分配进行“自举bootstrapping”的需要,避免了时序差分学习的“短视”行为;
  4. 可以通过self-attention直接执行信度分配。这与缓慢传播奖励并容易产生干扰信号的 Bellman Backup 相反,可以使 Transformer 在奖励稀少或分散注意力的情况下仍然有效地工作.

Dependencies

1. D4RL ( Dataset for Deep Data-Driven Reinforcement Learning )

2. MUJOCO 210

# 安装之前先安装absl-py和matplotlib 
pip install absl-py 
pip install matplotlib 

"""
git clone https://github.com/rail-berkeley/d4rl.git
cd d4rl
pip install -e . # 这种方法不好使 !! 
"""

#首先在https://github.com/deepmind/dm_control这个库git clone
# cd
pip install -r requirement.txt 
# 然后 
pip install matplotlib 
# 然后 https://github.com/takuseno/d3rlpy 
pip install d3rlpy 
# 然后安装mujoco 210  
# 直接安装,然后添加环境变量 
# 装完之后进d4rl文件夹下
python setup.py install 
# 成功安装 d4rl 1.1 

3. GPT-2


pip install transformers

Experiments

Group1: Decision Transformer — Hopper-v3-Medium-Dataset

参数Config

class Config:
    env = "hopper"
    dataset = "medium"
    mode = "normal" # "delayed" : all rewards moved to end of trajectory
    device = 'cuda'
    log_dir = 'TB_log/'
    record_algo = 'DT_Hopper_v1'
    test_cycles = datetime.datetime.now().strftime('%Y%m%d_%H%M%S')

    # 模型
    model_type = "DT"
    activation_function = 'relu'

    # Scalar
    max_length = 20 # max_len # K
    pct_traj = 1.
    batch_size = 64
    embed_dim = 128
    n_layer = 3
    n_head = 1
    dropout = 0.1
    lr = 1e-4
    wd = 1e-4
    warmup_steps = 1000
    num_eval_episodes = 100
    max_iters = 50
    num_steps_per_iter = 1000

    # Bool
    log_to_tb = True

效果

image.png

Owner
Irving
Irving
Real-Time Multi-Contact Model Predictive Control via ADMM

Here, you can find the code for the paper 'Real-Time Multi-Contact Model Predictive Control via ADMM'. Code is currently being cleared up and optimize

17 Dec 28, 2022
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

Jianzhu Guo 3.4k Jan 02, 2023
BlockUnexpectedPackets - Preventing BungeeCord CPU overload due to Layer 7 DDoS attacks by scanning BungeeCord's logs

BlockUnexpectedPackets This script automatically blocks DDoS attacks that are sp

SparklyPower 3 Mar 31, 2022
天勤量化开发包, 期货量化, 实时行情/历史数据/实盘交易

TqSdk 天勤量化交易策略程序开发包 TqSdk 是一个由信易科技发起并贡献主要代码的开源 python 库. 依托快期多年积累成熟的交易及行情服务器体系, TqSdk 支持用户使用极少的代码量构建各种类型的量化交易策略程序, 并提供包含期货、期权、股票的 历史数据-实时数据-开发调试-策略回测-

信易科技 2.8k Dec 30, 2022
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [PaddlePaddle Implementation] Homepage of paper: Paint Transformer: Fee

442 Dec 16, 2022
A fast Evolution Strategy implementation in Python

Evostra: Evolution Strategy for Python Evolution Strategy (ES) is an optimization technique based on ideas of adaptation and evolution. You can learn

Mika 251 Dec 08, 2022
Official implementation for the paper: "Multi-label Classification with Partial Annotations using Class-aware Selective Loss"

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
Official PyTorch code for WACV 2022 paper "CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows"

CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows WACV 2022 preprint:https://arxiv.org/abs/2107.1

Denis 156 Dec 28, 2022
Ranking Models in Unlabeled New Environments (iccv21)

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

14 Dec 17, 2021
PyTorch implementation of UPFlow (unsupervised optical flow learning)

UPFlow: Upsampling Pyramid for Unsupervised Optical Flow Learning By Kunming Luo, Chuan Wang, Shuaicheng Liu, Haoqiang Fan, Jue Wang, Jian Sun Megvii

kunming luo 87 Dec 20, 2022
Reproduces the results of the paper "Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations".

Finite basis physics-informed neural networks (FBPINNs) This repository reproduces the results of the paper Finite Basis Physics-Informed Neural Netwo

Ben Moseley 65 Dec 28, 2022
Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning

Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning Reference Abeßer, J. & Müller, M. Towards Audio Domain Adapt

Jakob Abeßer 2 Jul 06, 2022
This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation)

This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation) Usage example python dynamic_inverted_softmax.py --sims_train

36 Dec 29, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022
Self-supervised Product Quantization for Deep Unsupervised Image Retrieval - ICCV2021

Self-supervised Product Quantization for Deep Unsupervised Image Retrieval Pytorch implementation of SPQ Accepted to ICCV 2021 - paper Young Kyun Jang

Young Kyun Jang 71 Dec 27, 2022
Randomized Correspondence Algorithm for Structural Image Editing

===================================== README: Inpainting based PatchMatch ===================================== @Author: Younesse ANDAM @Conta

Younesse 116 Dec 24, 2022
Fully-automated scripts for collecting AI-related papers

AI-Paper-collector Fully-automated scripts for collecting AI-related papers List of Conferences to crawel ACL: 21-19 (including findings) EMNLP: 21-19

Gordon Lee 776 Jan 08, 2023
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L

120 Dec 28, 2022
A fast Protein Chain / Ligand Extractor and organizer.

Are you tired of using visualization software, or full blown suites just to separate protein chains / ligands ? Are you tired of organizing the mess o

Amine Abdz 9 Nov 06, 2022