Reproduces the results of the paper "Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations".

Overview

Finite basis physics-informed neural networks (FBPINNs)


This repository reproduces the results of the paper Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations, B. Moseley, T. Nissen-Meyer and A. Markham, Jul 2021 ArXiv.


Key contributions

  • Physics-informed neural networks (PINNs) offer a powerful new paradigm for solving problems relating to differential equations
  • However, a key limitation is that PINNs struggle to scale to problems with large domains and/or multi-scale solutions
  • We present finite basis physics-informed neural networks (FBPINNs), which are able to scale to these problems
  • To do so, FBPINNs use a combination of domain decomposition, subdomain normalisation and flexible training schedules
  • FBPINNs outperform PINNs in terms of accuracy and computational resources required

Workflow

FBPINNs divide the problem domain into many small, overlapping subdomains. A neural network is placed within each subdomain such that within the center of the subdomain, the network learns the full solution, whilst in the overlapping regions, the solution is defined as the sum over all overlapping networks.

We use smooth, differentiable window functions to locally confine each network to its subdomain, and the inputs of each network are individually normalised over the subdomain.

In comparison to existing domain decomposition techniques, FBPINNs do not require additional interface terms in their loss function, and they ensure the solution is continuous across subdomain interfaces by the construction of their solution ansatz.

Installation

FBPINNs only requires Python libraries to run.

We recommend setting up a new environment, for example:

conda create -n fbpinns python=3  # Use conda package manager
conda activate fbpinns

and then installing the following libraries:

conda install scipy matplotlib jupyter
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
pip install tensorboardX

All of our work was completed using PyTorch version 1.8.1 with CUDA 10.2.

Finally, download the source code:

git clone https://github.com/benmoseley/FBPINNs.git

Getting started

The workflow to train and compare FBPINNs and PINNs is very simple to set up, and consists of three steps:

  1. Initialise a problems.Problem class, which defines the differential equation (and boundary condition) you want to solve
  2. Initialise a constants.Constants object, which defines all of the other training hyperparameters (domain, number of subdomains, training schedule, .. etc)
  3. Pass this Constants object to the main.FBPINNTrainer or main.PINNTrainer class and call the .train() method to start training.

For example, to solve the problem du/dx = cos(wx) shown above you can use the following code to train a FBPINN / PINN:

P = problems.Cos1D_1(w=1, A=0)# initialise problem class

c1 = constants.Constants(
            RUN="FBPINN_%s"%(P.name),# run name
            P=P,# problem class
            SUBDOMAIN_XS=[np.linspace(-2*np.pi,2*np.pi,5)],# defines subdomains
            SUBDOMAIN_WS=[2*np.ones(5)],# defines width of overlapping regions between subdomains
            BOUNDARY_N=(1/P.w,),# optional arguments passed to the constraining operator
            Y_N=(0,1/P.w,),# defines unnormalisation
            ACTIVE_SCHEDULER=active_schedulers.AllActiveSchedulerND,# training scheduler
            ACTIVE_SCHEDULER_ARGS=(),# training scheduler arguments
            N_HIDDEN=16,# number of hidden units in subdomain network
            N_LAYERS=2,# number of hidden layers in subdomain network
            BATCH_SIZE=(200,),# number of training points
            N_STEPS=5000,# number of training steps
            BATCH_SIZE_TEST=(400,),# number of testing points
            )

run = main.FBPINNTrainer(c1)# train FBPINN
run.train()

c2 = constants.Constants(
            RUN="PINN_%s"%(P.name),
            P=P,
            SUBDOMAIN_XS=[np.linspace(-2*np.pi,2*np.pi,5)],
            BOUNDARY_N=(1/P.w,),
            Y_N=(0,1/P.w,),
            N_HIDDEN=32,
            N_LAYERS=3,
            BATCH_SIZE=(200,),
            N_STEPS=5000,
            BATCH_SIZE_TEST=(400,),
            )

run = main.PINNTrainer(c2)# train PINN
run.train()

The training code will automatically start outputting training statistics, plots and tensorboard summaries. The tensorboard summaries can be viewed by installing tensorboard and then running the command line tensorboard --logdir fbpinns/results/summaries/.

Defining your own problem.Problem class

To learn how to define and solve your own problem, see the Defining your own problem Jupyter notebook here.

Reproducing our results

The purpose of each folder is as follows:

  • fbpinns : contains the main code which defines and trains FBPINNs.
  • analytical_solutions : contains a copy of the BURGERS_SOLUTION code used to compute the exact solution to the Burgers equation problem.
  • seismic-cpml : contains a Python implementation of the SEISMIC_CPML FD library used to solve the wave equation problem.
  • shared_modules : contains generic Python helper functions and classes.

To reproduce the results in the paper, use the following steps:

  1. Run the scripts fbpinns/paper_main_1D.py, fbpinns/paper_main_2D.py, fbpinns/paper_main_3D.py. These train and save all of the FBPINNs and PINNs presented in the paper.
  2. Run the notebook fbpinns/Paper plots.ipynb. This generates all of the plots in the paper.

Further questions?

Please raise a GitHub issue or feel free to contact us.

Owner
Ben Moseley
Physics + AI researcher at University of Oxford, ML lead at NASA Frontier Development Lab
Ben Moseley
code and models for "Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation"

Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation This repository contains code and models for the method described in: Golnaz

55 Jun 18, 2022
OpenMMLab Text Detection, Recognition and Understanding Toolbox

Introduction English | 简体中文 MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi

OpenMMLab 3k Jan 07, 2023
AAAI 2022: Stationary diffusion state neural estimation

Stationary Diffusion State Neural Estimation Although many graph-based clustering methods attempt to model the stationary diffusion state in their obj

绽琨 33 Nov 24, 2022
Implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hashing by Maximizing Bit Entropy

Deep Unsupervised Image Hashing by Maximizing Bit Entropy This is the PyTorch implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hash

62 Dec 30, 2022
Automated Evidence Collection for Fake News Detection

Automated Evidence Collection for Fake News Detection This is the code repo for the Automated Evidence Collection for Fake News Detection paper accept

Mrinal Rawat 2 Apr 12, 2022
Read and write layered TIFF ImageSourceData and ImageResources tags

Read and write layered TIFF ImageSourceData and ImageResources tags Psdtags is a Python library to read and write the Adobe Photoshop(r) specific Imag

Christoph Gohlke 4 Feb 05, 2022
Learning Chinese Character style with conditional GAN

zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me

Yuchen Tian 2.2k Jan 02, 2023
MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tricks

MEAL-V2 This is the official pytorch implementation of our paper: "MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tric

Zhiqiang Shen 653 Dec 19, 2022
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations This repo contains official code for the NeurIPS 2021 paper Imi

Jiayao Zhang 2 Oct 18, 2021
CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images

CurriculumNet Introduction This repo contains related code and models from the ECCV 2018 CurriculumNet paper. CurriculumNet is a new training strategy

156 Jul 04, 2022
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops

Google 21.3k Jan 01, 2023
“Robust Lightweight Facial Expression Recognition Network with Label Distribution Training”, AAAI 2021.

EfficientFace Zengqun Zhao, Qingshan Liu, Feng Zhou. "Robust Lightweight Facial Expression Recognition Network with Label Distribution Training". AAAI

Zengqun Zhao 119 Jan 08, 2023
Ludwig Benchmarking Toolkit

Ludwig Benchmarking Toolkit The Ludwig Benchmarking Toolkit is a personalized benchmarking toolkit for running end-to-end benchmark studies across an

HazyResearch 17 Nov 18, 2022
A library of scripts that interact with the PythonTurtle module to create games, drawings, and more

TurtleLib TurtleLib is a library of scripts that interact with the PythonTurtle module to create games, drawings, and more! Using the Scripts Copy or

1 Jan 15, 2022
PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset

Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin

Yuzhi ZHAO 11 Jul 28, 2022
object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII

赛题背景 在商品知识产权领域,知识产权体现为在线商品的设计和品牌。不幸的是,在每一天,存在着非法商户通过一些对抗手段干扰商标识别来逃避侵权,这带来了很高的知识产权风险和财务损失。为了促进先进的多媒体人工智能技术的发展,以保护企业来之不易的创作和想法免受恶意使用和剽窃,因此提出了鲁棒性标识检测挑战赛

65 Dec 22, 2022
Introduction to CPM

CPM CPM is an open-source program on large-scale pre-trained models, which is conducted by Beijing Academy of Artificial Intelligence and Tsinghua Uni

Tsinghua AI 136 Dec 23, 2022
Pure python implementation reverse-mode automatic differentiation

MiniGrad A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python. Inspired by Andrej Kar

Kenny Song 76 Sep 12, 2022
DeepOBS: A Deep Learning Optimizer Benchmark Suite

DeepOBS - A Deep Learning Optimizer Benchmark Suite DeepOBS is a benchmarking suite that drastically simplifies, automates and improves the evaluation

Aaron Bahde 7 May 12, 2020