Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface.

Overview

Gym-TORCS

Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface. TORCS is the open-rource realistic car racing simulator recently used as RL benchmark task in several AI studies.

Gym-TORCS is the python wrapper of TORCS for RL experiment with the simple interface (similar, but not fully) compatible with OpenAI-gym environments. The current implementaion is for only the single-track race in practie mode. If you want to use multiple tracks or other racing mode (quick race etc.), you may need to modify the environment, "autostart.sh" or the race configuration file using GUI of TORCS.

This code is developed based on vtorcs (https://github.com/giuse/vtorcs) and python-client for torcs (http://xed.ch/project/snakeoil/index.html).

The detailed explanation of original TORCS for AI research is given by Daniele Loiacono et al. (https://arxiv.org/pdf/1304.1672.pdf)

Because torcs has memory leak bug at race reset. As an ad-hoc solution, we relaunch and automate the gui setting in torcs. Any better solution is welcome!

Requirements

We are assuming you are using Ubuntu 14.04 LTS/16.04 LTS machine and installed

Example Code

The example code and agent are written in example_experiment.py and sample_agent.py.

Initialization of the Race

After the insallation of vtorcs-RL-color, you need to initialize the race setting. You can find the detailed explanation in a document (https://arxiv.org/pdf/1304.1672.pdf), but here I show the simple gui-based setting.

So first you need to run

sudo torcs

in the terminal, the GUI of TORCS should be launched. Then, you need to choose the race track by following the GUI (Race --> Practice --> Configure Race) and open TORCS server by selecting Race --> Practice --> New Race. This should result that TORCS keeps a blue screen with several text information.

If you need to treat the vision input in your AI agent, you have to set the small image size in TORCS. To do so, you have to run

python snakeoil3_gym.py

in the second terminal window after you open the TORCS server (just as written above). Then the race starts, and you can select the driving-window mode by F2 key during the race.

After the selection of the driving-window mode, you need to set the appropriate gui size. This is done by using the display option mode in Options --> Display. You can select the Screen Resolution, and you need to select 64x64 for visual input (our immplementation only support this screen size, other screen size results the unreasonable visual information). Then, you need to shut down TORCS to complete the configuration for the vision treatment.

Simple How-To

from gym_torcs import TorcsEnv

#### Generate a Torcs environment
# enable vision input, the action is steering only (1 dim continuous action)
env = TorcsEnv(vision=True, throttle=False)

# without vision input, the action is steering and throttle (2 dim continuous action)
# env = TorcsEnv(vision=False, throttle=True)

ob = env.reset(relaunch=True)  # with torcs relaunch (avoid memory leak bug in torcs)
# ob = env.reset()  # without torcs relaunch

# Generate an agent
from sample_agent import Agent
agent = Agent(1)  # steering only
action = agent.act(ob, reward, done, vision=True)

# single step
ob, reward, done, _ = env.step(action)

# shut down torcs
env.end()

Add Noise in Low-dim Sensors

If you want to apply sensor noise in low-dimensional sensors, you should

os.system('torcs -nofuel -nodamage -nolaptime -vision -noisy &')
os.system('torcs -nofuel -nolaptime -noisy &')

at 33 & 35th lines in gym_torcs.py

Great Application

gym-torcs was utilized in DDPG experiment with Keras by Ben Lau. This experiment is really great!

https://yanpanlau.github.io/2016/10/11/Torcs-Keras.html

Acknowledgement

gym_torcs was developed during the spring internship 2016 at Preferred Networks.

Owner
naoto yoshida
Ugoku-Namakemono (Moving Sloth). Computational philosopher. Connectionist. Behavior designer of autonomous robots.
naoto yoshida
traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation toolbox based on PyTorch.

traiNNer traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation to

202 Jan 04, 2023
A Python training and inference implementation of Yolov5 helmet detection in Jetson Xavier nx and Jetson nano

yolov5-helmet-detection-python A Python implementation of Yolov5 to detect head or helmet in the wild in Jetson Xavier nx and Jetson nano. In Jetson X

12 Dec 05, 2022
Code Release for Learning to Adapt to Evolving Domains

EAML Code release for "Learning to Adapt to Evolving Domains" (NeurIPS 2020) Prerequisites PyTorch = 0.4.0 (with suitable CUDA and CuDNN version) tor

23 Dec 07, 2022
PyTorch implementation of "A Simple Baseline for Low-Budget Active Learning".

A Simple Baseline for Low-Budget Active Learning This repository is the implementation of A Simple Baseline for Low-Budget Active Learning. In this pa

10 Nov 14, 2022
Official PyTorch Implementation for "Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes"

PVDNet: Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes This repository contains the official PyTorch implementatio

Junyong Lee 98 Nov 06, 2022
basic tutorial on pytorch

Quick Tutorial on PyTorch PyTorch Basics Linear Regression Logistic Regression Artificial Neural Networks Convolutional Neural Networks Recurrent Neur

7 Sep 15, 2022
Pytorch implementation of Decoupled Spatial-Temporal Transformer for Video Inpainting

Decoupled Spatial-Temporal Transformer for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu Sun, Xiaogang Wang, J

51 Dec 13, 2022
A python-image-classification web application project, written in Python and served through the Flask Microframework

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and

Gerald Maduabuchi 19 Dec 12, 2022
[NeurIPS 2021] The PyTorch implementation of paper "Self-Supervised Learning Disentangled Group Representation as Feature"

IP-IRM [NeurIPS 2021] The PyTorch implementation of paper "Self-Supervised Learning Disentangled Group Representation as Feature". Codes will be relea

Wang Tan 67 Dec 24, 2022
repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments

repro_eval repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments. The measures were d

IR Group at Technische Hochschule Köln 9 May 25, 2022
Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation.

DuoRec Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation. Usage Download datasets fr

Qrh 46 Dec 19, 2022
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021

Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha

Jingkang Wang 12 Nov 23, 2022
Learning Super-Features for Image Retrieval

Learning Super-Features for Image Retrieval This repository contains the code for running our FIRe model presented in our ICLR'22 paper: @inproceeding

NAVER 101 Dec 28, 2022
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022
Spherical CNNs

Spherical CNNs Equivariant CNNs for the sphere and SO(3) implemented in PyTorch Overview This library contains a PyTorch implementation of the rotatio

Jonas Köhler 893 Dec 28, 2022
Pytorch and Keras Implementations of Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects.

The repository contains the implementations for Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects. Model

Ankur Deria 115 Jan 06, 2023
Facial detection, landmark tracking and expression transfer library for Windows, Linux and Mac

Welcome to the CSIRO Face Analysis SDK. Documentation for the SDK can be found in doc/documentation.html. All code in this SDK is provided according t

Luiz Carlos Vieira 7 Jul 16, 2020
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Egqawkq 12 Jan 05, 2023
Official code for the paper: Deep Graph Matching under Quadratic Constraint (CVPR 2021)

QC-DGM This is the official PyTorch implementation and models for our CVPR 2021 paper: Deep Graph Matching under Quadratic Constraint. It also contain

Quankai Gao 55 Nov 14, 2022
UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network

We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network. paper: Unsupervised Image-to-Image Translation via Pr

208 Dec 30, 2022