In-place Parallel Super Scalar Samplesort (IPS⁴o)

Related tags

Deep Learningips4o
Overview

In-place Parallel Super Scalar Samplesort (IPS⁴o)

This is the implementation of the algorithm IPS⁴o presented in the paper Engineering In-place (Shared-memory) Sorting Algorithms, which contains an in-depth description of its inner workings, as well as an extensive experimental performance evaluation. Here's the abstract:

We present new sequential and parallel sorting algorithms that now represent the fastest known techniques for a wide range of input sizes, input distributions, data types, and machines. Somewhat surprisingly, part of the speed advantage is due to the additional feature of the algorithms to work in-place, i.e., they do not need a significant amount of space beyond the input array. Previously, the in-place feature often implied performance penalties. Our main algorithmic contribution is a blockwise approach to in-place data distribution that is provably cache-efficient. We also parallelize this approach taking dynamic load balancing and memory locality into account.

Our new comparison-based algorithm In-place Superscalar Samplesort (IPS⁴o), combines this technique with branchless decision trees. By taking cases with many equal elements into account and by adapting the distribution degree dynamically, we obtain a highly robust algorithm that outperforms the best previous in-place parallel comparison-based sorting algorithms by almost a factor of three. That algorithm also outperforms the best comparison-based competitors regardless of whether we consider in-place or not in-place, parallel or sequential settings.

Another surprising result is that IPS⁴o even outperforms the best (in-place or not in-place) integer sorting algorithms in a wide range of situations. In many of the remaining cases (often involving near-uniform input distributions, small keys, or a sequential setting), our new In-place Parallel Super Scalar Radix Sort (IPS²Ra) turns out to be the best algorithm.

Claims to have the -- in some sense -- "best" sorting algorithm can be found in many papers which cannot all be true. Therefore, we base our conclusions on an extensive experimental study involving a large part of the cross product of 21 state-of-the-art sorting codes, 6 data types, 10 input distributions, 4 machines, 4 memory allocation strategies, and input sizes varying over 7 orders of magnitude. This confirms the claims made about the robust performance of our algorithms while revealing major performance problems in many competitors outside the concrete set of measurements reported in the associated publications. This is particularly true for integer sorting algorithms giving one reason to prefer comparison-based algorithms for robust general-purpose sorting.

An initial version of IPS⁴o has been described in our publication on the 25th Annual European Symposium on Algorithms.

Usage

Clone this repository and check out its submodule

git clone --recurse-submodules https://github.com/ips4o/ips4o.git

or use the following commands instead if you want to include this repository as a submodule:

git submodule add https://github.com/ips4o/ips4o.git
git submodule update --recursive --init

IPS⁴o provides a CMake library for simple usage:

add_subdirectory(<path-to-the-ips4o-repository>)
target_link_libraries(<your-target> PRIVATE ips4o)

A minimal working example:

#include "ips4o.hpp"

// sort sequentially
ips4o::sort(begin, end[, comparator]);

// sort in parallel (uses OpenMP if available, std::thread otherwise)
ips4o::parallel::sort(begin, end[, comparator]);

The parallel version of IPS⁴o requires 16-byte atomic compare-and-exchange instructions to run the fastest. Most CPUs and compilers support 16-byte compare-and-exchange instructions nowadays. If the CPU in question does so, IPS⁴o uses 16-byte compare-and-exchange instructions when you set your CPU correctly (e.g., -march=native) or when you enable the instructions explicitly (-mcx16). In this case, you also have to link against GCC's libatomic (-latomic). Otherwise, we emulate some 16-byte compare-and-exchange instructions with locks which may slightly mitigate the performance of IPS⁴o.

If you use the CMake example shown above, we automatically optimize IPS⁴o for the native CPU (e.g., -march=native). You can disable the CMake property IPS4O_OPTIMIZE_FOR_NATIVE to avoid native optimization and you can enable the CMake property IPS4O_USE_MCX16 if you compile with GCC or Clang to enable 16-byte compare-and-exchange instructions explicitly.

IPS⁴o uses C++ threads if not specified otherwise. If you prefer OpenMP threads, you need to enable OpenMP threads, e.g., enable the CMake property IPS4O_USE_OPENMP or add OpenMP to your target. If you enable the CMake property DISABLE_IPS4O_PARALLEL, most of the parallel code will not be compiled and no parallel libraries will be linked. Otherwise, CMake automatically enables C++ threads (e.g., -pthread) and links against TBB and GCC's libatomic. (Only when you compile your code for 16-byte compare-and-exchange instructions you need libatomic.) Thus, you need the Thread Building Blocks (TBB) library to compile and execute the parallel version of IPS⁴o. We search for TBB with find_package(TBB REQUIRED). If you want to execute IPS⁴o in parallel but your TBB library is not accessible via find_package(TBB REQUIRED), you can still compile IPS⁴o with parallel support. Just enable the CMake property DISABLE_IPS4O_PARALLEL, enable C++ threads for your own target and link your own target against your TBB library (and also link your target against libatomic if you want 16-byte atomic compare-and-exchange instruction support).

If you do not set a CMake build type, we use the build type Release which disables debugging (e.g., -DNDEBUG) and enables optimizations (e.g., -O3).

Currently, the code does not compile on Windows.

Licensing

IPS⁴o is free software provided under the BSD 2-Clause License described in the LICENSE file. If you use this implementation of IPS⁴o in an academic setting please cite the paper Engineering In-place (Shared-memory) Sorting Algorithms using the BibTeX entry

@misc{axtmann2020engineering,
  title =	 {Engineering In-place (Shared-memory) Sorting Algorithms},
  author =	 {Michael Axtmann and Sascha Witt and Daniel Ferizovic and Peter Sanders},
  howpublished = {Computing Research Repository (CoRR)},
  year =	 {Sept. 2020},
  archivePrefix ={arXiv},
  eprint =	 {2009.13569},
}
Official implementation for the paper: Multi-label Classification with Partial Annotations using Class-aware Selective Loss

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
A simple code to perform canny edge contrast detection on images.

CECED-Canny-Edge-Contrast-Enhanced-Detection A simple code to perform canny edge contrast detection on images. A simple code to process images using c

Happy N. Monday 3 Feb 15, 2022
naked is a Python tool which allows you to strip a model and only keep what matters for making predictions.

naked is a Python tool which allows you to strip a model and only keep what matters for making predictions. The result is a pure Python function with no third-party dependencies that you can simply c

Max Halford 24 Dec 20, 2022
Delving into Localization Errors for Monocular 3D Object Detection, CVPR'2021

Delving into Localization Errors for Monocular 3D Detection By Xinzhu Ma, Yinmin Zhang, Dan Xu, Dongzhan Zhou, Shuai Yi, Haojie Li, Wanli Ouyang. Intr

XINZHU.MA 124 Jan 04, 2023
PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA

Soft DTW Loss Function for PyTorch in CUDA This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch

Keon Lee 76 Dec 20, 2022
A collection of 100 Deep Learning images and visualizations

A collection of Deep Learning images and visualizations. The project has been developed by the AI Summer team and currently contains almost 100 images.

AI Summer 65 Sep 12, 2022
Adaptive Graph Convolution for Point Cloud Analysis

Adaptive Graph Convolution for Point Cloud Analysis This repository contains the implementation of AdaptConv for point cloud analysis. Adaptive Graph

64 Dec 21, 2022
PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

Subin An 8 Nov 21, 2022
Source code for "OmniPhotos: Casual 360° VR Photography"

OmniPhotos: Casual 360° VR Photography Project Page | Video | Paper | Demo | Data This repository contains the source code for creating and viewing Om

Christian Richardt 144 Dec 30, 2022
Sample and Computation Redistribution for Efficient Face Detection

Introduction SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv. Performance Precision, flops and infer ti

Sajjad Aemmi 13 Mar 05, 2022
Python Actor concurrency library

Thespian Actor Library This library provides the framework of an Actor model for use by applications implementing Actors. Thespian Site with Documenta

Kevin Quick 177 Dec 11, 2022
(ICCV 2021) ProHMR - Probabilistic Modeling for Human Mesh Recovery

ProHMR - Probabilistic Modeling for Human Mesh Recovery Code repository for the paper: Probabilistic Modeling for Human Mesh Recovery Nikos Kolotouros

Nikos Kolotouros 209 Dec 13, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Dec 31, 2022
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
DeceFL: A Principled Decentralized Federated Learning Framework

DeceFL: A Principled Decentralized Federated Learning Framework This repository comprises codes that reproduce experiments in Ye, et al (2021), which

Huazhong Artificial Intelligence Lab (HAIL) 10 May 31, 2022
Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechanism

Period-alternatives-of-Softmax Experimental Demo for our paper 'Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechani

slwang9353 0 Sep 06, 2021
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

J K Terry 32 Nov 09, 2021
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
existing and custom freqtrade strategies supporting the new hyperstrategy format.

freqtrade-strategies Description Existing and self-developed strategies, rewritten to support the new HyperStrategy format from the freqtrade-develop

39 Aug 20, 2021
Keras attention models including botnet,CoaT,CoAtNet,CMT,cotnet,halonet,resnest,resnext,resnetd,volo,mlp-mixer,resmlp,gmlp,levit

Keras_cv_attention_models Keras_cv_attention_models Usage Basic Usage Layers Model surgery AotNet ResNetD ResNeXt ResNetQ BotNet VOLO ResNeSt HaloNet

319 Dec 28, 2022