naked is a Python tool which allows you to strip a model and only keep what matters for making predictions.

Related tags

Deep Learningnaked
Overview

naked

naked is a Python tool which allows you to strip a model and only keep what matters for making predictions. The result is a pure Python function with no third-party dependencies that you can simply copy/paste wherever you wish.

This is simpler than deploying an API endpoint or loading a serialized model. The jury is still out on whether this is sane or not. Of course I'm not the first one to have done this, for instance see sklearn-porter.

Installation

pip install git+https://github.com/MaxHalford/naked

Examples

sklearn.linear_model.LinearRegression

First, we fit a model.

import numpy as np
from sklearn.linear_model import LinearRegression

X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
y = np.dot(X, np.array([1, 2])) + 3
lin_reg = LinearRegression().fit(X, y)
lin_reg.fit(X, y)

Then, we strip it.

import naked

print(naked.strip(lin_reg))

Which produces the following output.

def linear_regression(x):

    coef_ = [1.0000000000000002, 1.9999999999999991]
    intercept_ = 3.0000000000000018

    return intercept_ + sum(xi * wi for xi, wi in enumerate(coef_))

sklearn.pipeline.Pipeline

import naked
from sklearn import linear_model
from sklearn import feature_extraction
from sklearn import pipeline
from sklearn import preprocessing

model = pipeline.make_pipeline(
    feature_extraction.text.TfidfVectorizer(),
    preprocessing.Normalizer(),
    linear_model.LogisticRegression(solver='liblinear')
)

docs = ['Sad', 'Angry', 'Happy', 'Joyful']
is_positive = [False, False, True, True]

model.fit(docs, is_positive)

print(naked.strip(model))

This produces the following output.

def tfidf_vectorizer(x):

    lowercase = True
    norm = 'l2'
    vocabulary_ = {'sad': 3, 'angry': 0, 'happy': 1, 'joyful': 2}
    idf_ = [1.916290731874155, 1.916290731874155, 1.916290731874155, 1.916290731874155]

    import re

    if lowercase:
        x = x.lower()

    # Tokenize
    x = re.findall(r"(?u)\b\w\w+\b", x)
    x = [xi for xi in x if len(xi) > 1]

    # Count term frequencies
    from collections import Counter
    tf = Counter(x)
    total = sum(tf.values())

    # Compute the TF-IDF of each tokenized term
    tfidf = [0] * len(vocabulary_)
    for term, freq in tf.items():
        try:
            index = vocabulary_[term]
        except KeyError:
            continue
        tfidf[index] = freq * idf_[index] / total

    # Apply normalization
    if norm == 'l2':
        norm_val = sum(xi ** 2 for xi in tfidf) ** .5

    return [v / norm_val for v in tfidf]

def normalizer(x):

    norm = 'l2'

    if norm == 'l2':
        norm_val = sum(xi ** 2 for xi in x) ** .5
    elif norm == 'l1':
        norm_val = sum(abs(xi) for xi in x)
    elif norm == 'max':
        norm_val = max(abs(xi) for xi in x)

    return [xi / norm_val for xi in x]

def logistic_regression(x):

    coef_ = [[-0.40105811611957726, 0.40105811611957726, 0.40105811611957726, -0.40105811611957726]]
    intercept_ = [0.0]

    import math

    logits = [
        b + sum(xi * wi for xi, wi in zip(x, w))
        for w, b in zip(coef_, intercept_)
    ]

    # Sigmoid activation for binary classification
    if len(logits) == 1:
        p_true = 1 / (1 + math.exp(-logits[0]))
        return [1 - p_true, p_true]

    # Softmax activation for multi-class classification
    z_max = max(logits)
    exp = [math.exp(z - z_max) for z in logits]
    exp_sum = sum(exp)
    return [e / exp_sum for e in exp]

def pipeline(x):
    x = tfidf_vectorizer(x)
    x = normalizer(x)
    x = logistic_regression(x)
    return x

FAQ

What models are supported?

>>> import naked
>>> print(naked.AVAILABLE)
sklearn
    LinearRegression
    LogisticRegression
    Normalizer
    StandardScaler
    TfidfVectorizer

Will this work for all library versions?

Not by design. A release of naked is intended to support a library above a particular version. If we notice that naked doesn't work for a newer version of a given library, then a new version of naked should be released to handle said library version. You may refer to the pyproject.toml file to view library support.

How can I trust this is correct?

This package is really easy to unit test. One simply has to compare the outputs of the model with its "naked" version and check that the outputs are identical. Check out the test_naked.py file if you're curious.

How should I handle feature names?

Let's take the example of a multi-class logistic regression trained on the wine dataset.

from sklearn import datasets
from sklearn import linear_model
from sklearn import pipeline
from sklearn import preprocessing

dataset = datasets.load_wine()
X = dataset.data
y = dataset.target
model = pipeline.make_pipeline(
    preprocessing.StandardScaler(),
    linear_model.LogisticRegression()
)
model.fit(X, y)

By default, the strip function produces a function that takes as input a list of feature values. Instead, let's say we want to evaluate the function on a dictionary of features, thus associating each feature value with a name.

x = dict(zip(dataset.feature_names, X[0]))
print(x)
{'alcohol': 14.23,
 'malic_acid': 1.71,
 'ash': 2.43,
 'alcalinity_of_ash': 15.6,
 'magnesium': 127.0,
 'total_phenols': 2.8,
 'flavanoids': 3.06,
 'nonflavanoid_phenols': 0.28,
 'proanthocyanins': 2.29,
 'color_intensity': 5.64,
 'hue': 1.04,
 'od280/od315_of_diluted_wines': 3.92,
 'proline': 1065.0}

Passing the feature names to the strip function will add a function that maps the features to a list.

naked.strip(model, input_names=dataset.feature_names)
def handle_input_names(x):
    names = ['alcohol', 'malic_acid', 'ash', 'alcalinity_of_ash', 'magnesium', 'total_phenols', 'flavanoids', 'nonflavanoid_phenols', 'proanthocyanins', 'color_intensity', 'hue', 'od280/od315_of_diluted_wines', 'proline']
    return [x[name] for name in names]

def standard_scaler(x):

    mean_ = [13.000617977528083, 2.336348314606741, 2.3665168539325854, 19.49494382022472, 99.74157303370787, 2.295112359550562, 2.0292696629213474, 0.36185393258426973, 1.5908988764044953, 5.058089882022473, 0.9574494382022468, 2.6116853932584254, 746.8932584269663]
    var_ = [0.6553597304633259, 1.241004080924126, 0.07484180027774268, 11.090030614821362, 202.84332786264366, 0.3894890323191514, 0.9921135115515715, 0.015401619113748266, 0.32575424820098453, 5.344255847629093, 0.05195144969069561, 0.5012544628203511, 98609.60096578706]
    with_mean = True
    with_std = True

    def scale(x, m, v):
        if with_mean:
            x -= m
        if with_std:
            x /= v ** .5
        return x

    return [scale(xi, m, v) for xi, m, v in zip(x, mean_, var_)]

def logistic_regression(x):

    coef_ = [[0.8101347947338147, 0.20382073148760085, 0.47221241678911957, -0.8447843882542064, 0.04952904623674445, 0.21372479616642068, 0.6478750705319883, -0.19982499112990385, 0.13833867563545404, 0.17160966151451867, 0.13090887117218597, 0.7259506896985365, 1.07895948707047], [-1.0103233753629153, -0.44045952703036084, -0.8480739967718842, 0.5835732316278703, -0.09770602368275362, 0.027527982220605866, 0.35399157401383297, 0.21278279386396404, 0.2633610495737497, -1.0412707677956505, 0.6825215991118386, 0.05287634940648419, -1.1407929345327175], [0.20018858062910203, 0.23663879554275832, 0.37586157998276365, 0.26121115662633365, 0.048176977446007865, -0.2412527783870254, -1.0018666445458222, -0.012957802734061021, -0.40169972520920566, 0.8696611062811332, -0.8134304702840255, -0.7788270391050198, 0.061833447462247046]]
    intercept_ = [0.41229358315867787, 0.7048164121833935, -1.1171099953420585]

    import math

    logits = [
        b + sum(xi * wi for xi, wi in zip(x, w))
        for w, b in zip(coef_, intercept_)
    ]

    # Sigmoid activation for binary classification
    if len(logits) == 1:
        p_true = 1 / (1 + math.exp(-logits[0]))
        return [1 - p_true, p_true]

    # Softmax activation for multi-class classification
    z_max = max(logits)
    exp = [math.exp(z - z_max) for z in logits]
    exp_sum = sum(exp)
    return [e / exp_sum for e in exp]

def pipeline(x):
    x = handle_input_names(x)
    x = standard_scaler(x)
    x = logistic_regression(x)
    return x

What about output names?

You can also specify the output_names parameter to associate each output value with a name. Of course, this doesn't work for cases where a single value is produced, such as single-target regression.

naked.strip(model, input_names=dataset.feature_names, output_names=dataset.target_names)
def handle_input_names(x):
    names = ['alcohol', 'malic_acid', 'ash', 'alcalinity_of_ash', 'magnesium', 'total_phenols', 'flavanoids', 'nonflavanoid_phenols', 'proanthocyanins', 'color_intensity', 'hue', 'od280/od315_of_diluted_wines', 'proline']
    return [x[name] for name in names]

def standard_scaler(x):

    mean_ = [13.000617977528083, 2.336348314606741, 2.3665168539325854, 19.49494382022472, 99.74157303370787, 2.295112359550562, 2.0292696629213474, 0.36185393258426973, 1.5908988764044953, 5.058089882022473, 0.9574494382022468, 2.6116853932584254, 746.8932584269663]
    var_ = [0.6553597304633259, 1.241004080924126, 0.07484180027774268, 11.090030614821362, 202.84332786264366, 0.3894890323191514, 0.9921135115515715, 0.015401619113748266, 0.32575424820098453, 5.344255847629093, 0.05195144969069561, 0.5012544628203511, 98609.60096578706]
    with_mean = True
    with_std = True

    def scale(x, m, v):
        if with_mean:
            x -= m
        if with_std:
            x /= v ** .5
        return x

    return [scale(xi, m, v) for xi, m, v in zip(x, mean_, var_)]

def logistic_regression(x):

    coef_ = [[0.8101347947338147, 0.20382073148760085, 0.47221241678911957, -0.8447843882542064, 0.04952904623674445, 0.21372479616642068, 0.6478750705319883, -0.19982499112990385, 0.13833867563545404, 0.17160966151451867, 0.13090887117218597, 0.7259506896985365, 1.07895948707047], [-1.0103233753629153, -0.44045952703036084, -0.8480739967718842, 0.5835732316278703, -0.09770602368275362, 0.027527982220605866, 0.35399157401383297, 0.21278279386396404, 0.2633610495737497, -1.0412707677956505, 0.6825215991118386, 0.05287634940648419, -1.1407929345327175], [0.20018858062910203, 0.23663879554275832, 0.37586157998276365, 0.26121115662633365, 0.048176977446007865, -0.2412527783870254, -1.0018666445458222, -0.012957802734061021, -0.40169972520920566, 0.8696611062811332, -0.8134304702840255, -0.7788270391050198, 0.061833447462247046]]
    intercept_ = [0.41229358315867787, 0.7048164121833935, -1.1171099953420585]

    import math

    logits = [
        b + sum(xi * wi for xi, wi in zip(x, w))
        for w, b in zip(coef_, intercept_)
    ]

    # Sigmoid activation for binary classification
    if len(logits) == 1:
        p_true = 1 / (1 + math.exp(-logits[0]))
        return [1 - p_true, p_true]

    # Softmax activation for multi-class classification
    z_max = max(logits)
    exp = [math.exp(z - z_max) for z in logits]
    exp_sum = sum(exp)
    return [e / exp_sum for e in exp]

def handle_output_names(x):
    names = ['class_0' 'class_1' 'class_2']
    return dict(zip(names, x))

def pipeline(x):
    x = handle_input_names(x)
    x = standard_scaler(x)
    x = logistic_regression(x)
    x = handle_output_names(x)
    return x

As you can see, by specifying input_names as well as output_names, we obtain a pipeline of functions which takes as input a dictionary and produces a dictionary.

Development workflow

git clone https://github.com/MaxHalford/naked
cd naked
poetry install
poetry shell
pytest

Things to do

  • Implement more models. For instance it should quite straightforward to support LightGBM.
  • Remove useless branching conditions. Parameters are currently handled via if statements. Ideally it would be nice to remove the if statements and only keep the code that will actually run.

License

MIT

Owner
Max Halford
Data wizard @alan-eu. PhD in machine learning applied to query optimization. Kaggle competitions Master. Online machine learning nut.
Max Halford
Deep Learning Models for Causal Inference

Extensive tutorials for learning how to build deep learning models for causal inference using selection on observables in Tensorflow 2.

Bernard J Koch 151 Dec 31, 2022
Pytorch Implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension)

DiffSinger - PyTorch Implementation PyTorch implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension). Status

Keon Lee 152 Jan 02, 2023
Implementing Vision Transformer (ViT) in PyTorch

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

2 Dec 24, 2021
TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction TSDF++ is a novel multi-object TSDF formulation that can encode mult

ETHZ ASL 130 Dec 29, 2022
Much faster than SORT(Simple Online and Realtime Tracking), a little worse than SORT

QSORT QSORT(Quick + Simple Online and Realtime Tracking) is a simple online and realtime tracking algorithm for 2D multiple object tracking in video s

Yonghye Kwon 8 Jul 27, 2022
Code for our CVPR2021 paper coordinate attention

Coordinate Attention for Efficient Mobile Network Design (preprint) This repository is a PyTorch implementation of our coordinate attention (will appe

Qibin (Andrew) Hou 726 Jan 05, 2023
3D-Reconstruction 基于深度学习方法的单目多视图三维重建

基于深度学习方法的单目多视图三维重建 Part I 三维重建 代码:Part1 技术文档:[Markdown] [PDF] 原始图像:Original Images 点云结果:Point Cloud Results-1

HMT_Curo 19 Dec 26, 2022
SSD: Single Shot MultiBox Detector pytorch implementation focusing on simplicity

SSD: Single Shot MultiBox Detector Introduction Here is my pytorch implementation of 2 models: SSD-Resnet50 and SSDLite-MobilenetV2.

Viet Nguyen 149 Jan 07, 2023
Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph

Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph Model Description Open-CyKG is a framework that is constructed using an attenti

Injy Sarhan 34 Jan 05, 2023
Evaluating Cross-lingual Sentence Representations

XNLI: The Cross-Lingual NLI Corpus XNLI is an evaluation corpus for language transfer and cross-lingual sentence classification in 15 languages. New:

Meta Research 395 Dec 19, 2022
Baselines for TrajNet++

TrajNet++ : The Trajectory Forecasting Framework PyTorch implementation of Human Trajectory Forecasting in Crowds: A Deep Learning Perspective TrajNet

VITA lab at EPFL 183 Jan 05, 2023
Fast and Context-Aware Framework for Space-Time Video Super-Resolution (VCIP 2021)

Fast and Context-Aware Framework for Space-Time Video Super-Resolution Preparation Dependencies PyTorch 1.2.0 CUDA 10.0 DCNv2 cd model/DCNv2 bash make

Xueheng Zhang 1 Mar 29, 2022
SegNet-like Autoencoders in TensorFlow

SegNet SegNet is a TensorFlow implementation of the segmentation network proposed by Kendall et al., with cool features like strided deconvolution, a

Andrea Azzini 66 Nov 05, 2021
RodoSol-ALPR Dataset

RodoSol-ALPR Dataset This dataset, called RodoSol-ALPR dataset, contains 20,000 images captured by static cameras located at pay tolls owned by the Ro

Rayson Laroca 45 Dec 15, 2022
Permute Me Softly: Learning Soft Permutations for Graph Representations

Permute Me Softly: Learning Soft Permutations for Graph Representations

Giannis Nikolentzos 7 Jul 10, 2022
Predicts an answer in yes or no.

Oui-ou-non-prediction Predicts an answer in 'yes' or 'no'. It is based on the game 'effeuiller la marguerite' in which the person plucks flower petals

Ananya Gupta 1 Jan 15, 2022
Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Contact and Human Dynamics from Monocular Video This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guib

Davis Rempe 207 Jan 05, 2023
[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p

Yu Meng 60 Dec 30, 2022
Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Paper For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted a

14 Sep 30, 2022
Official PyTorch implementation of the paper "Self-Supervised Relational Reasoning for Representation Learning", NeurIPS 2020 Spotlight.

Official PyTorch implementation of the paper: "Self-Supervised Relational Reasoning for Representation Learning" (2020), Patacchiola, M., and Storkey,

Massimiliano Patacchiola 135 Jan 03, 2023