naked is a Python tool which allows you to strip a model and only keep what matters for making predictions.

Related tags

Deep Learningnaked
Overview

naked

naked is a Python tool which allows you to strip a model and only keep what matters for making predictions. The result is a pure Python function with no third-party dependencies that you can simply copy/paste wherever you wish.

This is simpler than deploying an API endpoint or loading a serialized model. The jury is still out on whether this is sane or not. Of course I'm not the first one to have done this, for instance see sklearn-porter.

Installation

pip install git+https://github.com/MaxHalford/naked

Examples

sklearn.linear_model.LinearRegression

First, we fit a model.

import numpy as np
from sklearn.linear_model import LinearRegression

X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
y = np.dot(X, np.array([1, 2])) + 3
lin_reg = LinearRegression().fit(X, y)
lin_reg.fit(X, y)

Then, we strip it.

import naked

print(naked.strip(lin_reg))

Which produces the following output.

def linear_regression(x):

    coef_ = [1.0000000000000002, 1.9999999999999991]
    intercept_ = 3.0000000000000018

    return intercept_ + sum(xi * wi for xi, wi in enumerate(coef_))

sklearn.pipeline.Pipeline

import naked
from sklearn import linear_model
from sklearn import feature_extraction
from sklearn import pipeline
from sklearn import preprocessing

model = pipeline.make_pipeline(
    feature_extraction.text.TfidfVectorizer(),
    preprocessing.Normalizer(),
    linear_model.LogisticRegression(solver='liblinear')
)

docs = ['Sad', 'Angry', 'Happy', 'Joyful']
is_positive = [False, False, True, True]

model.fit(docs, is_positive)

print(naked.strip(model))

This produces the following output.

def tfidf_vectorizer(x):

    lowercase = True
    norm = 'l2'
    vocabulary_ = {'sad': 3, 'angry': 0, 'happy': 1, 'joyful': 2}
    idf_ = [1.916290731874155, 1.916290731874155, 1.916290731874155, 1.916290731874155]

    import re

    if lowercase:
        x = x.lower()

    # Tokenize
    x = re.findall(r"(?u)\b\w\w+\b", x)
    x = [xi for xi in x if len(xi) > 1]

    # Count term frequencies
    from collections import Counter
    tf = Counter(x)
    total = sum(tf.values())

    # Compute the TF-IDF of each tokenized term
    tfidf = [0] * len(vocabulary_)
    for term, freq in tf.items():
        try:
            index = vocabulary_[term]
        except KeyError:
            continue
        tfidf[index] = freq * idf_[index] / total

    # Apply normalization
    if norm == 'l2':
        norm_val = sum(xi ** 2 for xi in tfidf) ** .5

    return [v / norm_val for v in tfidf]

def normalizer(x):

    norm = 'l2'

    if norm == 'l2':
        norm_val = sum(xi ** 2 for xi in x) ** .5
    elif norm == 'l1':
        norm_val = sum(abs(xi) for xi in x)
    elif norm == 'max':
        norm_val = max(abs(xi) for xi in x)

    return [xi / norm_val for xi in x]

def logistic_regression(x):

    coef_ = [[-0.40105811611957726, 0.40105811611957726, 0.40105811611957726, -0.40105811611957726]]
    intercept_ = [0.0]

    import math

    logits = [
        b + sum(xi * wi for xi, wi in zip(x, w))
        for w, b in zip(coef_, intercept_)
    ]

    # Sigmoid activation for binary classification
    if len(logits) == 1:
        p_true = 1 / (1 + math.exp(-logits[0]))
        return [1 - p_true, p_true]

    # Softmax activation for multi-class classification
    z_max = max(logits)
    exp = [math.exp(z - z_max) for z in logits]
    exp_sum = sum(exp)
    return [e / exp_sum for e in exp]

def pipeline(x):
    x = tfidf_vectorizer(x)
    x = normalizer(x)
    x = logistic_regression(x)
    return x

FAQ

What models are supported?

>>> import naked
>>> print(naked.AVAILABLE)
sklearn
    LinearRegression
    LogisticRegression
    Normalizer
    StandardScaler
    TfidfVectorizer

Will this work for all library versions?

Not by design. A release of naked is intended to support a library above a particular version. If we notice that naked doesn't work for a newer version of a given library, then a new version of naked should be released to handle said library version. You may refer to the pyproject.toml file to view library support.

How can I trust this is correct?

This package is really easy to unit test. One simply has to compare the outputs of the model with its "naked" version and check that the outputs are identical. Check out the test_naked.py file if you're curious.

How should I handle feature names?

Let's take the example of a multi-class logistic regression trained on the wine dataset.

from sklearn import datasets
from sklearn import linear_model
from sklearn import pipeline
from sklearn import preprocessing

dataset = datasets.load_wine()
X = dataset.data
y = dataset.target
model = pipeline.make_pipeline(
    preprocessing.StandardScaler(),
    linear_model.LogisticRegression()
)
model.fit(X, y)

By default, the strip function produces a function that takes as input a list of feature values. Instead, let's say we want to evaluate the function on a dictionary of features, thus associating each feature value with a name.

x = dict(zip(dataset.feature_names, X[0]))
print(x)
{'alcohol': 14.23,
 'malic_acid': 1.71,
 'ash': 2.43,
 'alcalinity_of_ash': 15.6,
 'magnesium': 127.0,
 'total_phenols': 2.8,
 'flavanoids': 3.06,
 'nonflavanoid_phenols': 0.28,
 'proanthocyanins': 2.29,
 'color_intensity': 5.64,
 'hue': 1.04,
 'od280/od315_of_diluted_wines': 3.92,
 'proline': 1065.0}

Passing the feature names to the strip function will add a function that maps the features to a list.

naked.strip(model, input_names=dataset.feature_names)
def handle_input_names(x):
    names = ['alcohol', 'malic_acid', 'ash', 'alcalinity_of_ash', 'magnesium', 'total_phenols', 'flavanoids', 'nonflavanoid_phenols', 'proanthocyanins', 'color_intensity', 'hue', 'od280/od315_of_diluted_wines', 'proline']
    return [x[name] for name in names]

def standard_scaler(x):

    mean_ = [13.000617977528083, 2.336348314606741, 2.3665168539325854, 19.49494382022472, 99.74157303370787, 2.295112359550562, 2.0292696629213474, 0.36185393258426973, 1.5908988764044953, 5.058089882022473, 0.9574494382022468, 2.6116853932584254, 746.8932584269663]
    var_ = [0.6553597304633259, 1.241004080924126, 0.07484180027774268, 11.090030614821362, 202.84332786264366, 0.3894890323191514, 0.9921135115515715, 0.015401619113748266, 0.32575424820098453, 5.344255847629093, 0.05195144969069561, 0.5012544628203511, 98609.60096578706]
    with_mean = True
    with_std = True

    def scale(x, m, v):
        if with_mean:
            x -= m
        if with_std:
            x /= v ** .5
        return x

    return [scale(xi, m, v) for xi, m, v in zip(x, mean_, var_)]

def logistic_regression(x):

    coef_ = [[0.8101347947338147, 0.20382073148760085, 0.47221241678911957, -0.8447843882542064, 0.04952904623674445, 0.21372479616642068, 0.6478750705319883, -0.19982499112990385, 0.13833867563545404, 0.17160966151451867, 0.13090887117218597, 0.7259506896985365, 1.07895948707047], [-1.0103233753629153, -0.44045952703036084, -0.8480739967718842, 0.5835732316278703, -0.09770602368275362, 0.027527982220605866, 0.35399157401383297, 0.21278279386396404, 0.2633610495737497, -1.0412707677956505, 0.6825215991118386, 0.05287634940648419, -1.1407929345327175], [0.20018858062910203, 0.23663879554275832, 0.37586157998276365, 0.26121115662633365, 0.048176977446007865, -0.2412527783870254, -1.0018666445458222, -0.012957802734061021, -0.40169972520920566, 0.8696611062811332, -0.8134304702840255, -0.7788270391050198, 0.061833447462247046]]
    intercept_ = [0.41229358315867787, 0.7048164121833935, -1.1171099953420585]

    import math

    logits = [
        b + sum(xi * wi for xi, wi in zip(x, w))
        for w, b in zip(coef_, intercept_)
    ]

    # Sigmoid activation for binary classification
    if len(logits) == 1:
        p_true = 1 / (1 + math.exp(-logits[0]))
        return [1 - p_true, p_true]

    # Softmax activation for multi-class classification
    z_max = max(logits)
    exp = [math.exp(z - z_max) for z in logits]
    exp_sum = sum(exp)
    return [e / exp_sum for e in exp]

def pipeline(x):
    x = handle_input_names(x)
    x = standard_scaler(x)
    x = logistic_regression(x)
    return x

What about output names?

You can also specify the output_names parameter to associate each output value with a name. Of course, this doesn't work for cases where a single value is produced, such as single-target regression.

naked.strip(model, input_names=dataset.feature_names, output_names=dataset.target_names)
def handle_input_names(x):
    names = ['alcohol', 'malic_acid', 'ash', 'alcalinity_of_ash', 'magnesium', 'total_phenols', 'flavanoids', 'nonflavanoid_phenols', 'proanthocyanins', 'color_intensity', 'hue', 'od280/od315_of_diluted_wines', 'proline']
    return [x[name] for name in names]

def standard_scaler(x):

    mean_ = [13.000617977528083, 2.336348314606741, 2.3665168539325854, 19.49494382022472, 99.74157303370787, 2.295112359550562, 2.0292696629213474, 0.36185393258426973, 1.5908988764044953, 5.058089882022473, 0.9574494382022468, 2.6116853932584254, 746.8932584269663]
    var_ = [0.6553597304633259, 1.241004080924126, 0.07484180027774268, 11.090030614821362, 202.84332786264366, 0.3894890323191514, 0.9921135115515715, 0.015401619113748266, 0.32575424820098453, 5.344255847629093, 0.05195144969069561, 0.5012544628203511, 98609.60096578706]
    with_mean = True
    with_std = True

    def scale(x, m, v):
        if with_mean:
            x -= m
        if with_std:
            x /= v ** .5
        return x

    return [scale(xi, m, v) for xi, m, v in zip(x, mean_, var_)]

def logistic_regression(x):

    coef_ = [[0.8101347947338147, 0.20382073148760085, 0.47221241678911957, -0.8447843882542064, 0.04952904623674445, 0.21372479616642068, 0.6478750705319883, -0.19982499112990385, 0.13833867563545404, 0.17160966151451867, 0.13090887117218597, 0.7259506896985365, 1.07895948707047], [-1.0103233753629153, -0.44045952703036084, -0.8480739967718842, 0.5835732316278703, -0.09770602368275362, 0.027527982220605866, 0.35399157401383297, 0.21278279386396404, 0.2633610495737497, -1.0412707677956505, 0.6825215991118386, 0.05287634940648419, -1.1407929345327175], [0.20018858062910203, 0.23663879554275832, 0.37586157998276365, 0.26121115662633365, 0.048176977446007865, -0.2412527783870254, -1.0018666445458222, -0.012957802734061021, -0.40169972520920566, 0.8696611062811332, -0.8134304702840255, -0.7788270391050198, 0.061833447462247046]]
    intercept_ = [0.41229358315867787, 0.7048164121833935, -1.1171099953420585]

    import math

    logits = [
        b + sum(xi * wi for xi, wi in zip(x, w))
        for w, b in zip(coef_, intercept_)
    ]

    # Sigmoid activation for binary classification
    if len(logits) == 1:
        p_true = 1 / (1 + math.exp(-logits[0]))
        return [1 - p_true, p_true]

    # Softmax activation for multi-class classification
    z_max = max(logits)
    exp = [math.exp(z - z_max) for z in logits]
    exp_sum = sum(exp)
    return [e / exp_sum for e in exp]

def handle_output_names(x):
    names = ['class_0' 'class_1' 'class_2']
    return dict(zip(names, x))

def pipeline(x):
    x = handle_input_names(x)
    x = standard_scaler(x)
    x = logistic_regression(x)
    x = handle_output_names(x)
    return x

As you can see, by specifying input_names as well as output_names, we obtain a pipeline of functions which takes as input a dictionary and produces a dictionary.

Development workflow

git clone https://github.com/MaxHalford/naked
cd naked
poetry install
poetry shell
pytest

Things to do

  • Implement more models. For instance it should quite straightforward to support LightGBM.
  • Remove useless branching conditions. Parameters are currently handled via if statements. Ideally it would be nice to remove the if statements and only keep the code that will actually run.

License

MIT

Owner
Max Halford
Data wizard @alan-eu. PhD in machine learning applied to query optimization. Kaggle competitions Master. Online machine learning nut.
Max Halford
Which Style Makes Me Attractive? Interpretable Control Discovery and Counterfactual Explanation on StyleGAN

Interpretable Control Exploration and Counterfactual Explanation (ICE) on StyleGAN Which Style Makes Me Attractive? Interpretable Control Discovery an

Bo Li 11 Dec 01, 2022
AI Toolkit for Healthcare Imaging

Medical Open Network for AI MONAI is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem. Its am

Project MONAI 3.7k Jan 07, 2023
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra

VITA 77 Oct 05, 2022
HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks

HiFiGAN Denoiser This is a Unofficial Pytorch implementation of the paper HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep F

Rishikesh (ऋषिकेश) 134 Dec 27, 2022
Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation

Unseen Object Clustering: Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation Introduction In this work, we propose a new method

NVIDIA Research Projects 132 Dec 13, 2022
Feature board for ERPNext

ERPNext Feature Board Feature board for ERPNext Development Prerequisites k3d kubectl helm bench Install K3d Cluster # export K3D_FIX_CGROUPV2=1 # use

Revant Nandgaonkar 16 Nov 09, 2022
RDA: Robust Domain Adaptation via Fourier Adversarial Attacking

RDA: Robust Domain Adaptation via Fourier Adversarial Attacking Updates 08/2021: check out our domain adaptation for video segmentation paper Domain A

17 Nov 30, 2022
Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images

SASSnet Code for paper: Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images(MICCAI 2020) Our code is origin from UA-MT You can fin

klein 125 Jan 03, 2023
A Framework for Encrypted Machine Learning in TensorFlow

TF Encrypted is a framework for encrypted machine learning in TensorFlow. It looks and feels like TensorFlow, taking advantage of the ease-of-use of t

TF Encrypted 0 Jul 06, 2022
Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection

Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection (NimPme) The official implementation of Novel Instances Mining with

12 Sep 08, 2022
"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"

This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-

Khanh Nguyen 131 Oct 21, 2022
Training Cifar-10 Classifier Using VGG16

opevcvdl-hw3 This project uses pytorch and Qt to achieve the requirements. Version Python 3.6 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.

Kenny Cheng 3 Aug 17, 2022
FACIAL: Synthesizing Dynamic Talking Face With Implicit Attribute Learning. ICCV, 2021.

FACIAL: Synthesizing Dynamic Talking Face with Implicit Attribute Learning PyTorch implementation for the paper: FACIAL: Synthesizing Dynamic Talking

226 Jan 08, 2023
PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos

PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos. By adopting a unified pipeline-ba

PyKale 370 Dec 27, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
A hobby project which includes a hand-gesture based virtual piano using a mobile phone camera and OpenCV library functions

Overview This is a hobby project which includes a hand-gesture controlled virtual piano using an android phone camera and some OpenCV library. My moti

Abhinav Gupta 1 Nov 19, 2021
Construct a neural network frame by Numpy

本项目的CSDN博客链接:https://blog.csdn.net/weixin_41578567/article/details/111482022 1. 概览 本项目主要用于神经网络的学习,通过基于numpy的实现,了解神经网络底层前向传播、反向传播以及各类优化器的原理。 该项目目前已实现的功

24 Jan 22, 2022
Offline Multi-Agent Reinforcement Learning Implementations: Solving Overcooked Game with Data-Driven Method

Overcooked-AI We suppose to apply traditional offline reinforcement learning technique to multi-agent algorithm. In this repository, we implemented be

Baek In-Chang 14 Sep 16, 2022
pq is a jq-like Pickle file viewer

pq PQ is a jq-like viewer/processing tool for pickle files. howto # pq '' file.pkl {'other': 456, 'test': 123} # pq 'table' file.pkl |other|test| | 45

3 Mar 15, 2022