Much faster than SORT(Simple Online and Realtime Tracking), a little worse than SORT

Related tags

Deep Learningqsort
Overview

QSORT

QSORT(Quick + Simple Online and Realtime Tracking) is a simple online and realtime tracking algorithm for 2D multiple object tracking in video sequences. It is much faster than SORT(Simple Online and Realtime Tracking). But its performance is a little worse than SORT.

This method and project are heavily based on abewley/sort.

Note: A significant proportion of QSORT's accuracy is attributed to the detections. For your convenience, this repo also contains Faster RCNN detections for the MOT benchmark sequences in the benchmark format. To run the detector yourself please see the original Faster RCNN project or the python reimplementation of py-faster-rcnn by Ross Girshick.

What is different from SORT?

QSORT is SORT skipping the Kalman Filter. That's it.

Dependencies:

To install required dependencies run:

pip install -r requirements.txt

Demo:

To run the tracker with the provided detections:

cd path/to/qsort
python qsort.py

To display the results you need to:

  1. Download the 2D MOT 2015 benchmark dataset and unzip this file.
  2. Create a symbolic link to the dataset
ln -s /path/to/MOT15 MOT15
  1. Run the demo with the --display flag
python qsort.py --display

Main Results

Using the MOT challenge devkit the method produces the following results (as described in the paper).

Method MOTA IDs FPS
SORT 34.0 274 742
QSORT 31.7 344 2194
  • Sequence: TUD-Campus, ETH-Sunnyday, ETH-Pedcross2, ADL-Rundle-8, Venice-2, and KITTI-17
  • MOTA, FPS: Higher is better.
  • IDs: Lower is better.

FPS is measured on a Intel I5 10400 CPU.

Using QSORT in your own project

Below is the gist of how to instantiate and update QSORT. See the 'main' section of qsort.py for a complete example.

from qsort import *

#create instance of QSORT
mot_tracker = QSORT() 

# get detections
...

# update QSORT
track_bbs_ids = mot_tracker.update(detections)

# track_bbs_ids is a np array where each row contains a valid bounding box and track_id (last column)
...
Owner
Yonghye Kwon
practical
Yonghye Kwon
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.

SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining

Cambridge Language Technology Lab 104 Dec 07, 2022
CLIP (Contrastive Language–Image Pre-training) for Italian

Italian CLIP CLIP (Radford et al., 2021) is a multimodal model that can learn to represent images and text jointly in the same space. In this project,

Italian CLIP 114 Dec 29, 2022
Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach

This repository holds the implementation for paper Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach Download our preproc

Qitian Wu 42 Dec 27, 2022
Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

OFA Sys 1.4k Jan 08, 2023
GPT, but made only out of gMLPs

GPT - gMLP This repository will attempt to crack long context autoregressive language modeling (GPT) using variations of gMLPs. Specifically, it will

Phil Wang 80 Dec 01, 2022
URIE: Universal Image Enhancementfor Visual Recognition in the Wild

URIE: Universal Image Enhancementfor Visual Recognition in the Wild This is the implementation of the paper "URIE: Universal Image Enhancement for Vis

Taeyoung Son 43 Sep 12, 2022
MakeItTalk: Speaker-Aware Talking-Head Animation

MakeItTalk: Speaker-Aware Talking-Head Animation This is the code repository implementing the paper: MakeItTalk: Speaker-Aware Talking-Head Animation

Adobe Research 285 Jan 08, 2023
PCGNN - Procedural Content Generation with NEAT and Novelty

PCGNN - Procedural Content Generation with NEAT and Novelty Generation Approach — Metrics — Paper — Poster — Examples PCGNN - Procedural Content Gener

Michael Beukman 8 Dec 10, 2022
Differentiable architecture search for convolutional and recurrent networks

Differentiable Architecture Search Code accompanying the paper DARTS: Differentiable Architecture Search Hanxiao Liu, Karen Simonyan, Yiming Yang. arX

Hanxiao Liu 3.7k Jan 09, 2023
NeurIPS workshop paper 'Counter-Strike Deathmatch with Large-Scale Behavioural Cloning'

Counter-Strike Deathmatch with Large-Scale Behavioural Cloning Tim Pearce, Jun Zhu Offline RL workshop, NeurIPS 2021 Paper: https://arxiv.org/abs/2104

Tim Pearce 169 Dec 26, 2022
Autonomous Movement from Simultaneous Localization and Mapping

Autonomous Movement from Simultaneous Localization and Mapping About us Built by a group of Clarkson University students with the help from Professor

14 Nov 07, 2022
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021
Malware Bypass Research using Reinforcement Learning

Malware Bypass Research using Reinforcement Learning

Bobby Filar 76 Dec 26, 2022
SegNet including indices pooling for Semantic Segmentation with tensorflow and keras

SegNet SegNet is a model of semantic segmentation based on Fully Comvolutional Network. This repository contains the implementation of learning and te

Yuta Kamikawa 172 Dec 23, 2022
Code for testing convergence rates of Lipschitz learning on graphs

📈 LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021
Technical Analysis library in pandas for backtesting algotrading and quantitative analysis

bta-lib - A pandas based Technical Analysis Library bta-lib is pandas based technical analysis library and part of the backtrader family. Links Main P

DRo 393 Dec 20, 2022
Hypercomplex Neural Networks with PyTorch

HyperNets Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate resear

Eleonora Grassucci 21 Dec 27, 2022
Simulated garment dataset for virtual try-on

Simulated garment dataset for virtual try-on This repository contains the dataset used in the following papers: Self-Supervised Collision Handling via

33 Dec 20, 2022
Share a benchmark that can easily apply reinforcement learning in Job-shop-scheduling

Gymjsp Gymjsp is an open source Python library, which uses the OpenAI Gym interface for easily instantiating and interacting with RL environments, and

134 Dec 08, 2022
maximal update parametrization (µP)

Maximal Update Parametrization (μP) and Hyperparameter Transfer (μTransfer) Paper link | Blog link In Tensor Programs V: Tuning Large Neural Networks

Microsoft 694 Jan 03, 2023