This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning

Overview

Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning

This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning.

We use a simple contrastive learning framework to pre-train models for information retrieval. Contriever, trained without supervision, is competitive with BM25 for [email protected] on the BEIR benchmark. After finetuning on MSMARCO, Contriever obtains strong performance, especially for the recall at 100.

Getting Started

Pre-trained models can be loaded through the HuggingFace transformers library:

import transformers
from src.contriever import Contriever

model = Contriever.from_pretrained("facebook/contriever")
tokenizer = transformers.BertTokenizerFast.from_pretrained("facebook/contriever")

Embeddings for different sentences can be obtained by doing the following:

sentences = [
    "Where was Marie Curie born?",
    "Maria Sklodowska, later known as Marie Curie, was born on November 7, 1867.",
    "Born in Paris on 15 May 1859, Pierre Curie was the son of Eugène Curie, a doctor of French Catholic origin from Alsace."
]

inputs = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt")
embeddings = model(**inputs)

Then similarity scores between the different sentences can be obtained with a dot product between the embeddings:

score01 = embddings[0] @ embeddings[1] #1.0473
score02 = embddings[0] @ embeddings[2] #1.0095

BEIR evaluation

Scores on the BEIR benchmark can be reproduced using eval_beir.py.

python eval_beir.py --model_name_or_path facebook/contriever-msmarco --dataset scifact

Available models

Model Description
facebook/contriever Model pre-trained on Wikipedia and CC-net without any supervised data
facebook/contriever-msmarco Pre-trained model fine-tuned on MS-MARCO

References

[1] G. Izacard, M. Caron, L. Hosseini, S. Riedel, P. Bojanowski, A. Joulin, E. Grave Towards Unsupervised Dense Information Retrieval with Contrastive Learning

@misc{izacard2021contriever,
      title={Towards Unsupervised Dense Information Retrieval with Contrastive Learning}, 
      author={Gautier Izacard and Mathilde Caron and Lucas Hosseini and Sebastian Riedel and Piotr Bojanowski and Armand Joulin and Edouard Grave},
      year={2021},
      eprint={2112.09118},
      archivePrefix={arXiv},
}

License

See the LICENSE file for more details.

Owner
Meta Research
Meta Research
Codebase for Image Classification Research, written in PyTorch.

pycls pycls is an image classification codebase, written in PyTorch. It was originally developed for the On Network Design Spaces for Visual Recogniti

Facebook Research 2k Jan 01, 2023
This repository provides an efficient PyTorch-based library for training deep models.

s3sec Test AWS S3 buckets for read/write/delete access This tool was developed to quickly test a list of s3 buckets for public read, write and delete

Bytedance Inc. 123 Jan 05, 2023
Implement slightly different caffe-segnet in tensorflow

Tensorflow-SegNet Implement slightly different (see below for detail) SegNet in tensorflow, successfully trained segnet-basic in CamVid dataset. Due t

Tseng Kuan Lun 364 Oct 27, 2022
Code for How To Create A Fully Automated AI Based Trading System With Python

AI Based Trading System This code works as a boilerplate for an AI based trading system with yfinance as data source and RobinHood or Alpaca as broker

Rubén 196 Jan 05, 2023
Civsim is a basic civilisation simulation and modelling system built in Python 3.8.

Civsim Introduction Civsim is a basic civilisation simulation and modelling system built in Python 3.8. It requires the following packages: perlin_noi

17 Aug 08, 2022
This is the code of using DQN to play Sekiro .

Update for using DQN to play sekiro 2021.2.2(English Version) This is the code of using DQN to play Sekiro . I am very glad to tell that I have writen

144 Dec 25, 2022
Array Camera Ptychography

Array Camera Ptychography This repository provides the code for the following papers: Schulz, Timothy J., David J. Brady, and Chengyu Wang. "Photon-li

Brady lab in Optical Sciences 1 Nov 15, 2021
Code for paper: Towards Tokenized Human Dynamics Representation

Video Tokneization Codebase for video tokenization, based on our paper Towards Tokenized Human Dynamics Representation. Prerequisites (tested under Py

Kenneth Li 20 May 31, 2022
[PNAS2021] The neural architecture of language: Integrative modeling converges on predictive processing

The neural architecture of language: Integrative modeling converges on predictive processing Code accompanying the paper The neural architecture of la

Martin Schrimpf 36 Dec 01, 2022
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

Adam Geitgey 46.9k Jan 03, 2023
Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving This is the source code for our paper Frequency Domain Image Tran

Mu Cai 52 Dec 23, 2022
Adaptive Graph Convolution for Point Cloud Analysis

Adaptive Graph Convolution for Point Cloud Analysis This repository contains the implementation of AdaptConv for point cloud analysis. Adaptive Graph

64 Dec 21, 2022
An efficient implementation of GPNN

Efficient-GPNN An efficient implementation of GPNN as depicted in "Drop the GAN: In Defense of Patches Nearest Neighbors as Single Image Generative Mo

7 Apr 16, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
PyTorch reimplementation of the Smooth ReLU activation function proposed in the paper "Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations" [arXiv 2022].

Smooth ReLU in PyTorch Unofficial PyTorch reimplementation of the Smooth ReLU (SmeLU) activation function proposed in the paper Real World Large Scale

Christoph Reich 10 Jan 02, 2023
Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation.

Unified-EPT Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation. Installation Linux, CUDA=10.0,

29 Aug 23, 2022
Code for "Diffusion is All You Need for Learning on Surfaces"

Source code for "Diffusion is All You Need for Learning on Surfaces", by Nicholas Sharp Souhaib Attaiki Keenan Crane Maks Ovsjanikov NOTE: the linked

Nick Sharp 247 Dec 28, 2022
Matplotlib Image labeller for classifying images

mpl-image-labeller Use Matplotlib to label images for classification. Works anywhere Matplotlib does - from the notebook to a standalone gui! For more

Ian Hunt-Isaak 5 Sep 24, 2022
Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

TableauBits 3 May 29, 2022
Spectral Tensor Train Parameterization of Deep Learning Layers

Spectral Tensor Train Parameterization of Deep Learning Layers This repository is the official implementation of our AISTATS 2021 paper titled "Spectr

Anton Obukhov 12 Oct 23, 2022