Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning, CVPR 2021

Overview

Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning

By Zhenda Xie*, Yutong Lin*, Zheng Zhang, Yue Cao, Stephen Lin and Han Hu.

This repo is an official implementation of "Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning" on PyTorch.

Introduction

PixPro (pixel-to-propagation) is an unsupervised visual feature learning approach by leveraging pixel-level pretext tasks. The learnt feature can be well transferred to downstream dense prediction tasks such as object detection and semantic segmentation. PixPro achieves the best transferring performance on Pascal VOC object detection (60.2 AP using C4) and COCO object detection (41.4 / 40.5 mAP using FPN / C4) with a ResNet-50 backbone.

An illustration of the proposed PixPro method.

Architecture of the PixContrast and PixPro methods.

Citation

@article{xie2020propagate,
  title={Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning},
  author={Xie, Zhenda and Lin, Yutong and Zhang, Zheng and Cao, Yue and Lin, Stephen and Hu, Han},
  conference={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2021}
}

Main Results

PixPro pre-trained models

Epochs Arch Instance Branch Download
100 ResNet-50 script | model
400 ResNet-50 script | model
100 ResNet-50 ✔️ -
400 ResNet-50 ✔️ -

Pascal VOC object detection

Faster-RCNN with C4

Method Epochs Arch AP AP50 AP75 Download
Scratch - ResNet-50 33.8 60.2 33.1 -
Supervised 100 ResNet-50 53.5 81.3 58.8 -
MoCo 200 ResNet-50 55.9 81.5 62.6 -
SimCLR 1000 ResNet-50 56.3 81.9 62.5 -
MoCo v2 800 ResNet-50 57.6 82.7 64.4 -
InfoMin 200 ResNet-50 57.6 82.7 64.6 -
InfoMin 800 ResNet-50 57.5 82.5 64.0 -
PixPro (ours) 100 ResNet-50 58.8 83.0 66.5 config | model
PixPro (ours) 400 ResNet-50 60.2 83.8 67.7 config | model

COCO object detection

Mask-RCNN with FPN

Method Epochs Arch Schedule bbox AP mask AP Download
Scratch - ResNet-50 1x 32.8 29.9 -
Supervised 100 ResNet-50 1x 39.7 35.9 -
MoCo 200 ResNet-50 1x 39.4 35.6 -
SimCLR 1000 ResNet-50 1x 39.8 35.9 -
MoCo v2 800 ResNet-50 1x 40.4 36.4 -
InfoMin 200 ResNet-50 1x 40.6 36.7 -
InfoMin 800 ResNet-50 1x 40.4 36.6 -
PixPro (ours) 100 ResNet-50 1x 40.8 36.8 config | model
PixPro (ours) 100* ResNet-50 1x 41.3 37.1 -
PixPro (ours) 400* ResNet-50 1x 41.4 37.4 -

* Indicates methods with instance branch.

Mask-RCNN with C4

Method Epochs Arch Schedule bbox AP mask AP Download
Scratch - ResNet-50 1x 26.4 29.3 -
Supervised 100 ResNet-50 1x 38.2 33.3 -
MoCo 200 ResNet-50 1x 38.5 33.6 -
SimCLR 1000 ResNet-50 1x 38.4 33.6 -
MoCo v2 800 ResNet-50 1x 39.5 34.5 -
InfoMin 200 ResNet-50 1x 39.0 34.1 -
InfoMin 800 ResNet-50 1x 38.8 33.8 -
PixPro (ours) 100 ResNet-50 1x 40.0 34.8 config | model
PixPro (ours) 400 ResNet-50 1x 40.5 35.3 config | model

Getting started

Requirements

At present, we have not checked the compatibility of the code with other versions of the packages, so we only recommend the following configuration.

  • Python 3.7
  • PyTorch == 1.4.0
  • Torchvision == 0.5.0
  • CUDA == 10.1
  • Other dependencies

Installation

We recommand using conda env to setup the experimental environments.

# Create environment
conda create -n PixPro python=3.7 -y
conda activate PixPro

# Install PyTorch & Torchvision
conda install pytorch=1.4.0 cudatoolkit=10.1 torchvision -c pytorch -y

# Install apex
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
cd ..

# Clone repo
git clone https://github.com/zdaxie/PixPro ./PixPro
cd ./PixPro

# Create soft link for data
mkdir data
ln -s ${ImageNet-Path} ./data/imagenet

# Install other requirements
pip install -r requirements.txt

Pretrain with PixPro

# Train with PixPro base for 100 epochs.
./tools/pixpro_base_r50_100ep.sh

Transfer to Pascal VOC or COCO object detection

# Convert a pre-trained PixPro model to detectron2's format
cd transfer/detection
python convert_pretrain_to_d2.py ${Input-Checkpoint(.pth)} ./output.pkl  

# Install Detectron2
python -m pip install detectron2==0.2.1 -f \
  https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.4/index.html

# Create soft link for data
mkdir datasets
ln -s ${Pascal-VOC-Path}/VOC2007 ./datasets/VOC2007
ln -s ${Pascal-VOC-Path}/VOC2012 ./datasets/VOC2012
ln -s ${COCO-Path} ./datasets/coco

# Train detector with pre-trained PixPro model
# 1. Train Faster-RCNN with Pascal-VOC
python train_net.py --config-file configs/Pascal_VOC_R_50_C4_24k_PixPro.yaml --num-gpus 8 MODEL.WEIGHTS ./output.pkl
# 2. Train Mask-RCNN-FPN with COCO
python train_net.py --config-file configs/COCO_R_50_FPN_1x_PixPro.yaml --num-gpus 8 MODEL.WEIGHTS ./output.pkl
# 3. Train Mask-RCNN-C4 with COCO
python train_net.py --config-file configs/COCO_R_50_C4_1x_PixPro.yaml --num-gpus 8 MODEL.WEIGHTS ./output.pkl

# Test detector with provided fine-tuned model
python train_net.py --config-file configs/Pascal_VOC_R_50_C4_24k_PixPro.yaml --num-gpus 8 --eval-only \
  MODEL.WEIGHTS ./pixpro_base_r50_100ep_voc_md5_ec2dfa63.pth

More models and logs will be released!

Acknowledgement

Our testbed builds upon several existing publicly available codes. Specifically, we have modified and integrated the following code into this project:

Contributing to the project

Any pull requests or issues are welcomed.

A Novel Plug-in Module for Fine-grained Visual Classification

Pytorch implementation for A Novel Plug-in Module for Fine-Grained Visual Classification. fine-grained visual classification task.

ChouPoYung 109 Dec 20, 2022
Two-stage CenterNet

Probabilistic two-stage detection Two-stage object detectors that use class-agnostic one-stage detectors as the proposal network. Probabilistic two-st

Xingyi Zhou 1.1k Jan 03, 2023
Object detection (YOLO) with pytorch, OpenCV and python

Real Time Object/Face Detection Using YOLO-v3 This project implements a real time object and face detection using YOLO algorithm. You only look once,

1 Aug 04, 2022
efficient neural audio synthesis in the waveform domain

neural waveshaping synthesis real-time neural audio synthesis in the waveform domain paper • website • colab • audio by Ben Hayes, Charalampos Saitis,

Ben Hayes 169 Dec 23, 2022
[Link]mareteutral - pars tradg wth M []

pairs-trading-with-ML Jonathan Larkin, August 2017 One popular strategy classification is Pairs Trading. Though this category of strategies can exhibi

Jonathan Larkin 134 Jan 06, 2023
NAS Benchmark in "Prioritized Architecture Sampling with Monto-Carlo Tree Search", CVPR2021

NAS-Bench-Macro This repository includes the benchmark and code for NAS-Bench-Macro in paper "Prioritized Architecture Sampling with Monto-Carlo Tree

35 Jan 03, 2023
NOMAD - A blackbox optimization software

################################################################################### #

Blackbox Optimization 78 Dec 29, 2022
A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows"

OutliersSlidingWindows A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows" Dataset generatio

PaoloPellizzoni 0 Jan 05, 2022
Computing Shapley values using VAEAC

Shapley values and the VAEAC method In this GitHub repository, we present the implementation of the VAEAC approach from our paper "Using Shapley Value

3 Nov 23, 2022
PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

Mouxiao Huang 20 Nov 15, 2022
Face Recognize System on camera AI OAK1

FRS on OAK1 Face Recognize System on camera OAK1 This project contains our work that deploy on camera OAK1 Features Anti-Spoofing Face detection Face

Tran Anh Tuan 6 Aug 08, 2022
All course materials for the Zero to Mastery Machine Learning and Data Science course.

Zero to Mastery Machine Learning Welcome! This repository contains all of the code, notebooks, images and other materials related to the Zero to Maste

Daniel Bourke 1.6k Jan 08, 2023
An intuitive library to extract features from time series

Time Series Feature Extraction Library Intuitive time series feature extraction This repository hosts the TSFEL - Time Series Feature Extraction Libra

Associação Fraunhofer Portugal Research 589 Jan 04, 2023
Semi-supervised Transfer Learning for Image Rain Removal. In CVPR 2019.

Semi-supervised Transfer Learning for Image Rain Removal This package contains the Python implementation of "Semi-supervised Transfer Learning for Ima

Wei Wei 59 Dec 26, 2022
Vector AI — A platform for building vector based applications. Encode, query and analyse data using vectors.

Vector AI is a framework designed to make the process of building production grade vector based applications as quickly and easily as possible. Create

Vector AI 267 Dec 23, 2022
A collection of random and hastily hacked together scripts for investigating EU-DCC

A collection of random and hastily hacked together scripts for investigating EU-DCC

Ryan Barrett 8 Mar 01, 2022
Aalto-cs-msc-theses - Listing of M.Sc. Theses of the Department of Computer Science at Aalto University

Aalto-CS-MSc-Theses Listing of M.Sc. Theses of the Department of Computer Scienc

Jorma Laaksonen 3 Jan 27, 2022
Steer OpenAI's Jukebox with Music Taggers

TagBox Steer OpenAI's Jukebox with Music Taggers! The closest thing we have to VQGAN+CLIP for music! Unsupervised Source Separation By Steering Pretra

Ethan Manilow 34 Nov 02, 2022
Codebase for the paper titled "Continual learning with local module selection"

This repository contains the codebase for the paper Continual Learning via Local Module Composition. Setting up the environemnt Create a new conda env

Oleksiy Ostapenko 20 Dec 10, 2022
Source code of AAAI 2022 paper "Towards End-to-End Image Compression and Analysis with Transformers".

Towards End-to-End Image Compression and Analysis with Transformers Source code of our AAAI 2022 paper "Towards End-to-End Image Compression and Analy

37 Dec 21, 2022