Repository for "Space-Time Correspondence as a Contrastive Random Walk" (NeurIPS 2020)

Overview

Space-Time Correspondence as a Contrastive Random Walk

This is the repository for Space-Time Correspondence as a Contrastive Random Walk, published at NeurIPS 2020.

[Paper] [Project Page] [Slides] [Poster] [Talk]

@inproceedings{jabri2020walk,
    Author = {Allan Jabri and Andrew Owens and Alexei A. Efros},
    Title = {Space-Time Correspondence as a Contrastive Random Walk},
    Booktitle = {Advances in Neural Information Processing Systems},
    Year = {2020},
}

Consider citing our work or acknowledging this repository if you found this code to be helpful :)

Requirements

  • pytorch (>1.3)
  • torchvision (0.6.0)
  • cv2
  • matplotlib
  • skimage
  • imageio

For visualization (--visualize):

  • wandb
  • visdom
  • sklearn

Train

An example training command is:

python -W ignore train.py --data-path /path/to/kinetics/ \
--frame-aug grid --dropout 0.1 --clip-len 4 --temp 0.05 \
--model-type scratch --workers 16 --batch-size 20  \
--cache-dataset --data-parallel --visualize --lr 0.0001

This yields a model with performance on DAVIS as follows (see below for evaluation instructions), provided as pretrained.pth:

 J&F-Mean    J-Mean  J-Recall  J-Decay    F-Mean  F-Recall   F-Decay
  0.67606  0.645902  0.758043   0.2031  0.706219   0.83221  0.246789

Arguments of interest:

  • --dropout: The rate of edge dropout (default 0.1).
  • --clip-len: Length of video sequence.
  • --temp: Softmax temperature.
  • --model-type: Type of encoder. Use scratch or scratch_zeropad if training from scratch. Use imagenet18 to load an Imagenet-pretrained network. Use scratch with --resume if reloading a checkpoint.
  • --batch-size: I've managed to train models with batch sizes between 6 and 24. If you have can afford a larger batch size, consider increasing the --lr from 0.0001 to 0.0003.
  • --frame-aug: grid samples a grid of patches to get nodes; none will just use a single image and use embeddings in the feature map as nodes.
  • --visualize: Log diagonistics to wandb and data visualizations to visdom.

Data

We use the official torchvision.datasets.Kinetics400 class for training. You can find directions for downloading Kinetics here. In particular, the code expects the path given for kinetics to contain a train_256 subdirectory.

You can also provide --data-path with a file with a list of directories of images, or a path to a directory of directory of images. In this case, clips are randomly subsampled from the directory.

Visualization

By default, the training script will log diagnostics to wandb and data visualizations to visdom.

Pretrained Model

You can find the model resulting from the training command above at pretrained.pth. We are still training updated ablation models and will post them when ready.


Evaluation: Label Propagation

The label propagation algorithm is described in test.py. The output of test.py (predicted label maps) must be post-processed for evaluation.

DAVIS

To evaluate a trained model on the DAVIS task, clone the davis2017-evaluation repository, and prepare the data by downloading the 2017 dataset and modifying the paths provided in eval/davis_vallist.txt. Then, run:

Label Propagation:

python test.py --filelist /path/to/davis/vallist.txt \
--model-type scratch --resume ../pretrained.pth --save-path /save/path \
--topk 10 --videoLen 20 --radius 12  --temperature 0.05  --cropSize -1

Though test.py expects a model file created with train.py, it can easily be modified to be used with other networks. Note that we simply use the same temperature used at training time.

You can also run the ImageNet baseline with the command below.

python test.py --filelist /path/to/davis/vallist.txt \
--model-type imagenet18 --save-path /save/path \
--topk 10 --videoLen 20 --radius 12  --temperature 0.05  --cropSize -1

Post-Process:

# Convert
python eval/convert_davis.py --in_folder /save/path/ --out_folder /converted/path --dataset /davis/path/

# Compute metrics
python /path/to/davis2017-evaluation/evaluation_method.py \
--task semi-supervised   --results_path /converted/path --set val \
--davis_path /path/to/davis/

You can generate the above commands with the script below, where removing --dryrun will actually run them in sequence.

python eval/run_test.py --model-path /path/to/model --L 20 --K 10  --T 0.05 --cropSize -1 --dryrun

Test-time Adaptation

To do.

This is a file about Unet implemented in Pytorch

Unet this is an implemetion of Unet in Pytorch and it's architecture is as follows which is the same with paper of Unet component of Unet Convolution

Dragon 1 Dec 03, 2021
This repo contains source code and materials for the TEmporally COherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Nils Thuerey 5.2k Jan 02, 2023
Semi-supervised Transfer Learning for Image Rain Removal. In CVPR 2019.

Semi-supervised Transfer Learning for Image Rain Removal This package contains the Python implementation of "Semi-supervised Transfer Learning for Ima

Wei Wei 59 Dec 26, 2022
Edge Restoration Quality Assessment

ERQA - Edge Restoration Quality Assessment ERQA - a full-reference quality metric designed to analyze how good image and video restoration methods (SR

MSU Video Group 27 Dec 17, 2022
PyTorch implementation of neural style transfer algorithm

neural-style-pt This is a PyTorch implementation of the paper A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias

770 Jan 02, 2023
GAN-STEM-Conv2MultiSlice - Exploring Generative Adversarial Networks for Image-to-Image Translation in STEM Simulation

GAN-STEM-Conv2MultiSlice GAN method to help covert lower resolution STEM images generated by convolution methods to higher resolution STEM images gene

UW-Madison Computational Materials Group 2 Feb 10, 2021
Retrieve and analysis data from SDSS (Sloan Digital Sky Survey)

Author: Behrouz Safari License: MIT sdss A python package for retrieving and analysing data from SDSS (Sloan Digital Sky Survey) Installation Install

Behrouz 3 Oct 28, 2022
Efficient-GlobalPointer - Pytorch Efficient GlobalPointer

引言 感谢苏神带来的模型,原文地址:https://spaces.ac.cn/archives/8877 如何运行 对应模型EfficientGlobalPoi

powerycy 40 Dec 14, 2022
Official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).

Knowledge Bridging for Empathetic Dialogue Generation This is the official implementation for paper Knowledge Bridging for Empathetic Dialogue Generat

Qintong Li 50 Dec 20, 2022
Async API for controlling Hue Lights

Hue API Async API for controlling Hue Lights Documentation: hue-api.nirantak.com Source: github.com/nirantak/hue-api Installation This is an async cli

Nirantak Raghav 4 Nov 16, 2022
Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

Ursa Zrimsek 2 Dec 14, 2022
Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado financeiro.

Tutoriais Públicos Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado finan

Trading com Dados 68 Oct 15, 2022
MINERVA: An out-of-the-box GUI tool for offline deep reinforcement learning

MINERVA is an out-of-the-box GUI tool for offline deep reinforcement learning, designed for everyone including non-programmers to do reinforcement learning as a tool.

Takuma Seno 80 Nov 06, 2022
Repo for parser tensorflow(.pb) and tflite(.tflite)

tfmodel_parser .pb file is the format of tensorflow model .tflite file is the format of tflite model, which usually used in mobile devices before star

1 Dec 23, 2021
MacroTools provides a library of tools for working with Julia code and expressions.

MacroTools.jl MacroTools provides a library of tools for working with Julia code and expressions. This includes a powerful template-matching system an

FluxML 278 Dec 11, 2022
Realtime Face Anti Spoofing with Face Detector based on Deep Learning using Tensorflow/Keras and OpenCV

Realtime Face Anti-Spoofing Detection 🤖 Realtime Face Anti Spoofing Detection with Face Detector to detect real and fake faces Please star this repo

Prem Kumar 86 Aug 03, 2022
A more easy-to-use implementation of KPConv

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 35 Dec 14, 2022
"Segmenter: Transformer for Semantic Segmentation" reproduced via mmsegmentation

Segmenter-based-on-OpenMMLab "Segmenter: Transformer for Semantic Segmentation, arxiv 2105.05633." reproduced via mmsegmentation. We reproduce Segment

EricKani 22 Feb 24, 2022
[CVPR'21] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving

TransFuser This repository contains the code for the CVPR 2021 paper Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. If you find our

695 Jan 05, 2023
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 04, 2023