Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers (arXiv2021)

Overview

Polyp-PVT

by Bo Dong, Wenhai Wang, Deng-Ping Fan, Jinpeng Li, Huazhu Fu, & Ling Shao.

This repo is the official implementation of "Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers".

1. Introduction

Polyp-PVT is initially described in arxiv.

Most polyp segmentation methods use CNNs as their backbone, leading to two key issues when exchanging information between the encoder and decoder: 1) taking into account the differences in contribution between different-level features; and 2) designing effective mechanism for fusing these features. Different from existing CNN-based methods, we adopt a transformer encoder, which learns more powerful and robust representations. In addition, considering the image acquisition influence and elusive properties of polyps, we introduce three novel modules, including a cascaded fusion module (CFM), a camouflage identification module (CIM), a and similarity aggregation module (SAM). Among these, the CFM is used to collect the semantic and location information of polyps from high-level features, while the CIM is applied to capture polyp information disguised in low-level features. With the help of the SAM, we extend the pixel features of the polyp area with high-level semantic position information to the entire polyp area, thereby effectively fusing cross-level features. The proposed model, named Polyp-PVT , effectively suppresses noises in the features and significantly improves their expressive capabilities.

Polyp-PVT achieves strong performance on image-level polyp segmentation (0.808 mean Dice and 0.727 mean IoU on ColonDB) and video polyp segmentation (0.880 mean dice and 0.802 mean IoU on CVC-300-TV), surpassing previous models by a large margin.

2. Framework Overview

3. Results

3.1 Image-level Polyp Segmentation

3.2 Image-level Polyp Segmentation Compared Results:

We also provide some result of baseline methods, You could download from Google Drive/Baidu Drive [code:nhhv], including our results and that of compared models.

3.3 Video Polyp Segmentation

3.4 Video Polyp Segmentation Compared Results:

We also provide some result of baseline methods, You could download from Google Drive/Baidu Drive [code:33ie], including our results and that of compared models.

4. Usage:

4.1 Recommended environment:

Python 3.8
Pytorch 1.7.1
torchvision 0.8.2

4.2 Data preparation:

Downloading training and testing datasets and move them into ./dataset/, which can be found in this Google Drive/Baidu Drive [code:dr1h].

4.3 Pretrained model:

You should download the pretrained model from Google Drive/Baidu Drive [code:w4vk], and then put it in the './pretrained_pth' folder for initialization.

4.4 Training:

Clone the repository:

git clone https://github.com/DengPingFan/Polyp-PVT.git
cd Polyp-PVT 
bash train.sh

4.5 Testing:

cd Polyp-PVT 
bash test.sh

4.6 Evaluating your trained model:

Matlab: Please refer to the work of MICCAI2020 (link).

Python: Please refer to the work of ACMMM2021 (link).

Please note that we use the Matlab version to evaluate in our paper.

4.7 Well trained model:

You could download the trained model from Google Drive/Baidu Drive [code:9rpy] and put the model in directory './model_pth'.

4.8 Pre-computed maps:

Google Drive/Baidu Drive [code:x3jc]

5. Citation:

@aticle{dong2021PolypPVT,
  title={Polyp-PVT: Polyp Segmentation with PyramidVision Transformers},
  author={Bo, Dong and Wenhai, Wang and Deng-Ping, Fan and Jinpeng, Li and Huazhu, Fu and Ling, Shao},
  journal={arXiv preprint arXiv:2108.06932},
  year={2021}
}

6. Acknowledgement

We are very grateful for these excellent works PraNet, EAGRNet and MSEG, which have provided the basis for our framework.

7. FAQ:

If you want to improve the usability or any piece of advice, please feel free to contact me directly ([email protected]).

8. License

The source code is free for research and education use only. Any comercial use should get formal permission first.

Owner
Deng-Ping Fan
Researcher (PI)
Deng-Ping Fan
A collection of 100 Deep Learning images and visualizations

A collection of Deep Learning images and visualizations. The project has been developed by the AI Summer team and currently contains almost 100 images.

AI Summer 65 Sep 12, 2022
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

Junha Lee 10 Dec 02, 2022
Solutions and questions for AoC2021. Merry christmas!

Advent of Code 2021 Merry christmas! 🎄 🎅 To get solutions and approximate execution times for implementations, please execute the run.py script in t

Wilhelm Ågren 5 Dec 29, 2022
李云龙二次元风格化!打滚卖萌,使用了animeGANv2进行了视频的风格迁移

李云龙二次元风格化!一键star、fork,你也可以生成这样的团长! 打滚卖萌求star求fork! 0.效果展示 视频效果前往B站观看效果最佳:李云龙二次元风格化: github开源repo:李云龙二次元风格化 百度AIstudio开源地址,一键fork即可运行: 李云龙二次元风格化!一键fork

oukohou 44 Dec 04, 2022
Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization

Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization 0. Environment Environment: python 3.6 and cuda 10

Haitao Yang 62 Dec 30, 2022
AI Flow is an open source framework that bridges big data and artificial intelligence.

Flink AI Flow Introduction Flink AI Flow is an open source framework that bridges big data and artificial intelligence. It manages the entire machine

144 Dec 30, 2022
Collective Multi-type Entity Alignment Between Knowledge Graphs (WWW'20)

CG-MuAlign A reference implementation for "Collective Multi-type Entity Alignment Between Knowledge Graphs", published in WWW 2020. If you find our pa

Bran Zhu 28 Dec 11, 2022
Point cloud processing tool library.

Point Cloud ToolBox This point cloud processing tool library can be used to process point clouds, 3d meshes, and voxels. Environment python 3.7.5 Dep

ZhangXinyun 40 Dec 09, 2022
Satellite labelling tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, rings etc.

Satellite labelling tool About this app A tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, ri

Czech Hydrometeorological Institute - Satellite Department 10 Sep 14, 2022
Scripts and outputs related to the paper Prediction of Adverse Biological Effects of Chemicals Using Knowledge Graph Embeddings.

Knowledge Graph Embeddings and Chemical Effect Prediction, 2020. Scripts and outputs related to the paper Prediction of Adverse Biological Effects of

Knowledge Graphs at the Norwegian Institute for Water Research 1 Nov 01, 2021
This is the official pytorch implementation of Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation(TESKD)

Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation (TESKD) By Zheng Li[1,4], Xiang Li[2], Lingfeng Yang[2,4], Jian Yang[2], Zh

Zheng Li 9 Sep 26, 2022
The implemention of Video Depth Estimation by Fusing Flow-to-Depth Proposals

Flow-to-depth (FDNet) video-depth-estimation This is the implementation of paper Video Depth Estimation by Fusing Flow-to-Depth Proposals Jiaxin Xie,

32 Jun 14, 2022
CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper)

CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper) (Accepted for oral presentation at ACM

Minha Kim 1 Nov 12, 2021
基于pytorch构建cyclegan示例

cyclegan-demo 基于Pytorch构建CycleGAN示例 如何运行 准备数据集 将数据集整理成4个文件,分别命名为 trainA, trainB:训练集,A、B代表两类图片 testA, testB:测试集,A、B代表两类图片 例如 D:\CODE\CYCLEGAN-DEMO\DATA

Koorye 3 Oct 18, 2022
Exploit ILP to learn symmetry breaking constraints of ASP programs.

ILP Symmetry Breaking Overview This project aims to exploit inductive logic programming to lift symmetry breaking constraints of ASP programs. Given a

Research Group Production Systems 1 Apr 13, 2022
Prediction of MBA refinance Index (Mortgage prepayment)

Prediction of MBA refinance Index (Mortgage prepayment) Deep Neural Network based Model The ability to predict mortgage prepayment is of critical use

Ruchil Barya 1 Jan 16, 2022
This repository contains code to run experiments in the paper "Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers."

Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers This repository contains code to run experiments in the paper "Signal Stre

0 Jan 19, 2022
Generative Art Using Neural Visual Grammars and Dual Encoders

Generative Art Using Neural Visual Grammars and Dual Encoders Arnheim 1 The original algorithm from the paper Generative Art Using Neural Visual Gramm

DeepMind 231 Jan 05, 2023
MISSFormer: An Effective Medical Image Segmentation Transformer

MISSFormer Code for paper "MISSFormer: An Effective Medical Image Segmentation Transformer". Please read our preprint at the following link: paper_add

Fong 22 Dec 24, 2022
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022