[ICCV 2021] Deep Hough Voting for Robust Global Registration

Related tags

Deep LearningDHVR
Overview

Deep Hough Voting for Robust Global Registration, ICCV, 2021

Project Page | Paper | Video

Deep Hough Voting for Robust Global Registration
Junha Lee1, Seungwook Kim1, Minsu Cho1, Jaesik Park1
1POSTECH CSE & GSAI
in ICCV 2021

An Overview of the proposed pipeline

Overview

Point cloud registration is the task of estimating the rigid transformation that aligns a pair of point cloud fragments. We present an efficient and robust framework for pairwise registration of real-world 3D scans, leveraging Hough voting in the 6D transformation parameter space. First, deep geometric features are extracted from a point cloud pair to compute putative correspondences. We then construct a set of triplets of correspondences to cast votes on the 6D Hough space, representing the transformation parameters in sparse tensors. Next, a fully convolutional refinement module is applied to refine the noisy votes. Finally, we identify the consensus among the correspondences from the Hough space, which we use to predict our final transformation parameters. Our method outperforms state-of-the-art methods on 3DMatch and 3DLoMatch benchmarks while achieving comparable performance on KITTI odometry dataset. We further demonstrate the generalizability of our approach by setting a new state-of-the-art on ICL-NUIM dataset, where we integrate our module into a multi-way registration pipeline.

Citing our paper

@InProceedings{lee2021deephough, 
    title={Deep Hough Voting for Robust Global Registration},
    author={Junha Lee and Seungwook Kim and Minsu Cho and Jaesik Park},
    booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    year={2021}
}

Experiments

Speed vs Accuracy Qualitative results
Table Accuracy vs. Speed

Installation

This repository is developed and tested on

  • Ubuntu 18.04
  • CUDA 11.1
  • Python 3.8.11
  • Pytorch 1.4.9
  • MinkowskiEngine 0.5.4

Environment Setup

Our pipeline is built on MinkowskiEngine. You can install the MinkowskiEngine and the python requirements on your system with:

# setup requirements for MinkowksiEngine
conda create -n dhvr python=3.8
conda install pytorch=1.9.1 torchvision cudatoolkit=11.1 -c pytorch -c nvidia
conda install numpy
conda install openblas-devel -c anaconda

# install MinkowskiEngine
pip install -U git+https://github.com/NVIDIA/MinkowskiEngine -v --no-deps --install-option="--blas_include_dirs=${CONDA_PREFIX}/include" --install-option="--blas=openblas"

# download and setup DHVR
git clone https://github.com/junha-l/DHVR.git
cd DHVR
pip install -r requirements.txt

We also depends on torch-batch-svd, an open-source library for 100x faster (batched) svd on GPU. You can follow the below instruction to install torch-batch-svd

# if your cuda installation directory is other than "/usr/local/cuda", you have to specify it.
(CUDA_HOME=PATH/TO/CUDA/ROOT) bash scripts/install_3rdparty.sh

3DMatch Dataset

Training

You can download preprocessed training dataset, which is provided by the author of FCGF, via these commands:

# download 3dmatch train set 
bash scripts/download_3dmatch.sh PATH/TO/3DMATCH
# create symlink
ln -s PATH/TO/3DMATCH ./dataset/3dmatch

Testing

The official 3DMatch test set is available at the official website. You should download fragments data of Geometric Registration Benchmark and decompress them to a new folder.

Then, create a symlink via following command:

ln -s PATH/TO/3DMATCH_TEST ./dataset/3dmatch-test

Train DHVR

The default feature extractor we used in our experiments is FCGF. You can download pretrained FCGF models via following commands:

bash scripts/download_weights.sh

Then, train with

python train.py config/train_3dmatch.gin --run_name NAME_OF_EXPERIMENT

Test DHVR

You can test DHVR via following commands:

3DMatch

python test.py config/test_3dmatch.gin --run_name EXP_NAME --load_path PATH/TO/CHECKPOINT

3DLoMatch

python test.py config/test_3dlomatch.gin --run_name EXP_NAME --load_path PATH/TO/CHECKPOINT

Pretrained Weights

We also provide pretrained weights on 3DMatch dataset. You can download the checkpoint in following link.

Acknowledments

Our code is based on the MinkowskiEngine. We also refer to FCGF, DGR, and torch-batch-svd.

Owner
Junha Lee
Junha Lee
A high performance implementation of HDBSCAN clustering.

HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates

2.3k Jan 02, 2023
Tensorflow-seq2seq-tutorials - Dynamic seq2seq in TensorFlow, step by step

seq2seq with TensorFlow Collection of unfinished tutorials. May be good for educational purposes. 1 - simple sequence-to-sequence model with dynamic u

Matvey Ezhov 1k Dec 17, 2022
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

86 Oct 05, 2022
TLDR: Twin Learning for Dimensionality Reduction

TLDR (Twin Learning for Dimensionality Reduction) is an unsupervised dimensionality reduction method that combines neighborhood embedding learning with the simplicity and effectiveness of recent self

NAVER 105 Dec 28, 2022
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'

NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p

Jongmin Andrew Yu 2 Feb 10, 2022
Dashboard for the COVID19 spread

COVID-19 Data Explorer App A streamlit Dashboard for the COVID-19 spread. The app is live at: [https://covid19.cwerner.ai]. New data is queried from G

Christian Werner 22 Sep 29, 2022
Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"

AmbientGAN: Generative models from lossy measurements This repository provides code to reproduce results from the paper AmbientGAN: Generative models

Ashish Bora 87 Oct 19, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Jan 04, 2023
Scalable Multi-Agent Reinforcement Learning

Scalable Multi-Agent Reinforcement Learning 1. Featured algorithms: Value Function Factorization with Variable Agent Sub-Teams (VAST) [1] 2. Implement

3 Aug 02, 2022
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022
Activity tragle - Google is tracking everything, we just look at it

activity_tragle Google is tracking everything, we just look at it here. You need

BERNARD Guillaume 1 Feb 15, 2022
NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Xintao 593 Jan 03, 2023
基于AlphaPose的TensorRT加速

1. Requirements CUDA 11.1 TensorRT 7.2.2 Python 3.8.5 Cython PyTorch 1.8.1 torchvision 0.9.1 numpy 1.17.4 (numpy版本过高会出报错 this issue ) python-package s

52 Dec 06, 2022
Utilizes Pose Estimation to offer sprinters cues based on an image of their running form.

Running-Form-Correction Utilizes Pose Estimation to offer sprinters cues based on an image of their running form. How to Run Dependencies You will nee

3 Nov 08, 2022
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which reaches a median HNS of 205.7 after only 10M frames (the original Rainbow from Hessel et al. 2017 re

Dominik Schmidt 31 Dec 21, 2022
Automatically download the cwru data set, and then divide it into training data set and test data set

Automatically download the cwru data set, and then divide it into training data set and test data set.自动下载cwru数据集,然后分训练数据集和测试数据集

6 Jun 27, 2022
we propose a novel deep network, named feature aggregation and refinement network (FARNet), for the automatic detection of anatomical landmarks.

Feature Aggregation and Refinement Network for 2D Anatomical Landmark Detection Overview Localization of anatomical landmarks is essential for clinica

aoyueyuan 0 Aug 28, 2022
StarGAN2 for practice

StarGAN2 for practice This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scie

vadim epstein 87 Sep 24, 2022
A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms

Denoising Diffusion Probabilistic Model for Proteins Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to gen

Phil Wang 108 Nov 23, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022