This code is for eCaReNet: explainable Cancer Relapse Prediction Network.

Related tags

Deep Learningecarenet
Overview

eCaReNet

This code is for eCaReNet: explainable Cancer Relapse Prediction Network. (Towards Explainable End-to-End Prostate Cancer Relapse Prediction from H&E Images Combining Self-Attention MultipleInstance Learning with a Recurrent Neural Network, Dietrich, E., Fuhlert, P., Ernst, A., Sauter, G., Lennartz, M., Stiehl, H. S., Zimmermann, M., Bonn, S. - ML4H 2021)

eCaReNet takes histopathology images (TMA spots) as input and predicts a survival curve and a risk score for individual patients. The network consists of an optional self-attention layer, an RNN and an attention based Mulitple Instance Learning module for explainability. To increase model performance, we suggest to include a binary prediction of a relapse as input to the model. alt text

TL;DR

  • store your dataset information in a .csv file

  • make your own my_config.yaml, following the example in config.yaml

  • run $ python train_model.py with my_config.yaml

Requirements and Installation

  • Python and Tensorflow
  • npm install -g omniboard to view results in browser and inspect experiments

Data preprocessing

All annotations of your images need to be stored in a .csv file with the image path and annotations as columns. You need separate csv files for your training, validation and test sets. Here is an example:

img_path censored relapse_time survived_2years ISUP_score
img1.png 0 80.3 1 3

The columns can be named as you wish, you need to tell python which columns to use in the config file ↓

config file

The config file (config.yaml) is needed to define the directories where the images and training, validation and test .csv files are stored. Further, you can choose whether to train a classification (for M_ISUP or M_Bin) or the survival model eCaReNet, which loss function and optimizer to use. Also the preprocessing is defined here (patching, resizing, ...) Details are found in config.yaml. It is best to create a custom my_config.yaml file and run the code as

$ python train_model.py with my_config.yaml 

You can also change single parameters in the command line like

$ python train_model.py with my_config.yaml general.seed="13" 

Training procedure

As recommended in our paper, we suggest to first train M_ISUP with config_isup.yaml. So train your base network (Inception or other) on a classification task as a transfer learning task. Second, train a binary classifier with config_bin.yaml, choose an appropriate time point to base the decision on. Here, you need to load the pretrained model from step one, do not load Inception or other keras models. For the third step the prediction from model two M_Bin are needed, so please store the information in the .csv file. Then again, load model from step one, and this time include the predictions as additional input and train.

Unittests

For most functions, a unittest is given in the test folder. This can be used to test if the function works correctly after adapting it (e.g. add more functionality or speed up). Further, it can be used for debugging to find errors or to find out what the function is actually doing. This is faster than running the whole code.

Docker

In the docker_context folder, the Dockerfile and requirements are stored. To build a docker image run

$ "docker build -t IMAGE_NAME:DATE docker_context"
$ docker build  -t ecarenet_docker:2021_10 docker_context

To use the image, run something like the following. Needs to be adapted to your own paths and resources

$ docker run --gpus=all --cpuset-cpus=5,6 --user `id --user`:`id --group` -it --rm -v /home/UNAME/PycharmProjects/ecarenet:/opt/project -v /PATH/TO/DATA:/data --network NETWORK_NAME--name MY_DOCKER_CONTAINER ecarenet_docker:2021_10 bash

More information on docker can be found here: https://docs.docker.com/get-started/

sacred

We use sacred (https://sacred.readthedocs.io/en/stable/) and a MongoDB (https://sacred.readthedocs.io/en/stable/observers.html https://www.mongodb.com/) to store all experiments. For each training run, a folder with an increasing id will be created automatically and all information about the run will be stored in that folder, like resulting weights, plots, metrics and losses. Which folder this is, is written in settings/default_settings and in the config in training.model_save_path.

The code works without mongodb, if you want. All results will be stored. If you do want to use the mongodb, you need to run a docker container with a mongoDB:

$ docker run -d -p PORTNUMBER:27017 -v ./my_data_folder:/data/db --name name_of_my_mongodb mongo

Create a network:

$ docker network create NETWORK_NAME

Attach container to network

$ docker network connect NETWORK_NAME name_of_my_mongodb

Then during training, the --network NETWORK_NAME property needs to be set. Use omniboard to inspect results:

$ omniboard -m localhost:PORTNUMBER:sacred

Tensorflow

Using tensorflow tf.data speeds up the data generation and preprocessing steps. If the dataset is very large, it can be cached with tf.cache() either in memory or to a file with tf.cache('/path/to/folder/plus/filename') [in dataset_creation/dataset_main.py]. Using tensorflow, it is also best to not overly use numpy functions or to decorate them with tf.function. Functions decorated with @tf.function will be included in the tensorflow graph in the first step and not be created again and again. For debugging, you need to remove the tf.function decorator, because otherwise the function (and breakpoints inside) will be skipped.

Owner
Institute of Medical Systems Biology
Institute of Medical Systems Biology
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa

MLV Lab (Machine Learning and Vision Lab at Korea University) 48 Nov 09, 2022
OverFeat is a Convolutional Network-based image classifier and feature extractor.

OverFeat OverFeat is a Convolutional Network-based image classifier and feature extractor. OverFeat was trained on the ImageNet dataset and participat

593 Dec 08, 2022
🔪 Elimination based Lightweight Neural Net with Pretrained Weights

ELimNet ELimNet: Eliminating Layers in a Neural Network Pretrained with Large Dataset for Downstream Task Removed top layers from pretrained Efficient

snoop2head 4 Jul 12, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
Code, Models and Datasets for OpenViDial Dataset

OpenViDial This repo contains downloading instructions for the OpenViDial dataset in 《OpenViDial: A Large-Scale, Open-Domain Dialogue Dataset with Vis

119 Dec 08, 2022
Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Scan-Dataset

Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Sc

2 Dec 26, 2021
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip)

Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip) Introduction TL;DR: We propose an efficient and trainabl

17 Dec 01, 2022
A Unified Generative Framework for Various NER Subtasks.

This is the code for ACL-ICJNLP2021 paper A Unified Generative Framework for Various NER Subtasks. Install the package in the requirements.txt, then u

177 Jan 05, 2023
Video Matting via Consistency-Regularized Graph Neural Networks

Video Matting via Consistency-Regularized Graph Neural Networks Project Page | Real Data | Paper Installation Our code has been tested on Python 3.7,

41 Dec 26, 2022
Magic tool for managing internet connection in local network by @zalexdev

Megacut ✂️ A new powerful Python3 tool for managing internet on a local network Installation git clone https://github.com/stryker-project/megacut cd m

Stryker 12 Dec 15, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Jan 06, 2023
PyTorch implementation of Pay Attention to MLPs

gMLP PyTorch implementation of Pay Attention to MLPs. Quickstart Clone this repository. git clone https://github.com/jaketae/g-mlp.git Navigate to th

Jake Tae 34 Dec 13, 2022
Learning to Prompt for Vision-Language Models.

CoOp Paper: Learning to Prompt for Vision-Language Models Authors: Kaiyang Zhou, Jingkang Yang, Chen Change Loy, Ziwei Liu CoOp (Context Optimization)

Kaiyang 679 Jan 04, 2023
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network.

Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network

111 Dec 27, 2022
[CVPR 2022 Oral] TubeDETR: Spatio-Temporal Video Grounding with Transformers

TubeDETR: Spatio-Temporal Video Grounding with Transformers Website • STVG Demo • Paper This repository provides the code for our paper. This includes

Antoine Yang 108 Dec 27, 2022
FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery (TGRS)

FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery by Ailong Ma, Junjue Wang*, Yanfei Zhon

Kingdrone 43 Jan 05, 2023
NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset

NOD (Night Object Detection) Dataset NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset, BM

Igor Morawski 17 Nov 05, 2022
SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

SSL_SLAM2 Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example) This repo is an extension work of SSL_SL

Wang Han 王晗 1.3k Jan 08, 2023
(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds by Mutian Xu*, Runyu Ding*, Hengshuang Zhao, and Xiaojuan Qi. Int

CVMI Lab 228 Dec 25, 2022
Self-supervised Label Augmentation via Input Transformations (ICML 2020)

Self-supervised Label Augmentation via Input Transformations Authors: Hankook Lee, Sung Ju Hwang, Jinwoo Shin (KAIST) Accepted to ICML 2020 Install de

hankook 96 Dec 29, 2022