Python interface for the DIGIT tactile sensor

Overview

DIGIT-INTERFACE

License: CC BY-NC 4.0 PyPI DIGIT-logo

Python interface for the DIGIT tactile sensor.

For updates and discussions please join the #DIGIT channel at the www.touch-sensing.org community.

Installation

The preferred way of installation is through PyPi:

pip install digit-interface

Alternatively, you can manually clone the repository and install the package using:

git clone https://github.com/facebookresearch/digit-interface.git 
cd digit-interface
pip install -r requirements.txt
python setup.py install

If you cannot access the device by serial number on your system follow adding DIGIT udev Rule

Usage

The default connection method to the DIGIT tactile sensor is through the unique device serial number. The serial number is found on the back of each DIGIT. See List all connected DIGIT's to find device serial numbers which are connected to the host.

Once you have the device serial number, reading data from the sensor should be as easy as

from digit_interface.digit import Digit
 
d = Digit("D12345") # Unique serial number
d.connect()
d.show_view()
d.disconnect()

Upon connection each DIGIT device initializes with a default stream resolution of VGA: 640x480 at 30fps

Further Usage

List all connected DIGIT's:

To list all connected DIGIT's and display sensor information:

from digit_interface.digit_handler import DigitHandler

digits = DigitHandler.list_digits()
Obtain a single frame:
from digit_interface.digit import Digit

d = Digit("D12345") # Unique serial number
d.connect()
frame = d.get_frame()
List supported stream formats:

Additional streams are supported, these streams vary in resolution and frames per second.

To list the available stream formats:

from digit_interface.digit_handler import DigitHandler

print("Supported streams: \n {}".format(DigitHandler.STREAMS))
Change resolution:
d.set_resolution(DigitHandler.STREAMS["QVGA"])
Change FPS,

Based on supported fps for each respective resolution. All streams support pre-defined resolutions which can be found in DigitHandler.STREAMS

d.set_fps(DigitHandler.STREAMS["QVGA"]["fps"]["15fps"])

Adding DIGIT udev Rule

Add your user to the plugdev group,

adduser username plugdev

Copy udev rule,

sudo cp ./udev/50-DIGIT.rules /lib/udev/rules.d/

Reload rules,

sudo udevadm control --reload
sudo udevadm trigger

Replug the DIGIT device into host.

License

This code is licensed under CC-by-NC, as found in the LICENSE file.

Citing

If you use this project in your research, please cite this paper:

@Article{Lambeta2020DIGIT,
  author  = {Lambeta, Mike and Chou, Po-Wei and Tian, Stephen and Yang, Brian and Maloon, Benjamin and Victoria Rose Most and Stroud, Dave and Santos, Raymond and Byagowi, Ahmad and Kammerer, Gregg and Jayaraman, Dinesh and Calandra, Roberto},
  title   = {{DIGIT}: A Novel Design for a Low-Cost Compact High-Resolution Tactile Sensor with Application to In-Hand Manipulation},
  journal = {IEEE Robotics and Automation Letters (RA-L)},
  year    = {2020},
  volume  = {5},
  number  = {3},
  pages   = {3838--3845},
  doi     = {10.1109/LRA.2020.2977257},
}
Owner
Facebook Research
Facebook Research
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

Tencent YouTu Research 146 Dec 24, 2022
HDMapNet: A Local Semantic Map Learning and Evaluation Framework

HDMapNet_devkit Devkit for HDMapNet. HDMapNet: A Local Semantic Map Learning and Evaluation Framework Qi Li, Yue Wang, Yilun Wang, Hang Zhao [Paper] [

Tsinghua MARS Lab 421 Jan 04, 2023
a general-purpose Transformer based vision backbone

Swin Transformer By Ze Liu*, Yutong Lin*, Yue Cao*, Han Hu*, Yixuan Wei, Zheng Zhang, Stephen Lin and Baining Guo. This repo is the official implement

Microsoft 9.9k Jan 08, 2023
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training @ KDD 2020

GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training Original implementation for paper GCC: Graph Contrastive Coding for Graph Neural N

THUDM 274 Dec 27, 2022
The Malware Open-source Threat Intelligence Family dataset contains 3,095 disarmed PE malware samples from 454 families

MOTIF Dataset The Malware Open-source Threat Intelligence Family (MOTIF) dataset contains 3,095 disarmed PE malware samples from 454 families, labeled

Booz Allen Hamilton 112 Dec 13, 2022
Western-3DSlicer-Modules - Point-Set Registrations for Ultrasound Probe Calibrations

Point-Set Registrations for Ultrasound Probe Calibrations -Undergraduate Thesis-

Matteo Tanzi 0 May 04, 2022
Pytorch implementation for DFN: Distributed Feedback Network for Single-Image Deraining.

DFN:Distributed Feedback Network for Single-Image Deraining Abstract Recently, deep convolutional neural networks have achieved great success for sing

6 Nov 05, 2022
PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis

Impersonator PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer an

SVIP Lab 1.7k Jan 06, 2023
Ejemplo Algoritmo Viterbi - Example of a Viterbi algorithm applied to a hidden Markov model on DNA sequence

Ejemplo Algoritmo Viterbi Ejemplo de un algoritmo Viterbi aplicado a modelo ocul

Mateo Velásquez Molina 1 Jan 10, 2022
Official implementation of VQ-Diffusion

Vector Quantized Diffusion Model for Text-to-Image Synthesis Overview This is the official repo for the paper: [Vector Quantized Diffusion Model for T

Microsoft 592 Jan 03, 2023
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
NNR conformation conditional and global probabilities estimation and analysis in peptides or proteins fragments

NNR and global probabilities estimation and analysis in peptides or protein fragments This module calculates global and NNR conformation dependent pro

0 Jul 15, 2021
Continuous Conditional Random Field Convolution for Point Cloud Segmentation

CRFConv This repository is the implementation of "Continuous Conditional Random Field Convolution for Point Cloud Segmentation" 1. Setup 1) Building c

Fei Yang 8 Dec 08, 2022
Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)

SA-AutoAug Scale-aware Automatic Augmentation for Object Detection Yukang Chen, Yanwei Li, Tao Kong, Lu Qi, Ruihang Chu, Lei Li, Jiaya Jia [Paper] [Bi

DV Lab 182 Dec 29, 2022
FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction

FaceExtraction FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction Occlusions often occur in face images in the wild, tr

16 Dec 14, 2022
Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021)

Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021) Introduction This is the official repository for the PyTorch implementation

165 Dec 07, 2022
Pretrained models for Jax/Haiku; MobileNet, ResNet, VGG, Xception.

Pre-trained image classification models for Jax/Haiku Jax/Haiku Applications are deep learning models that are made available alongside pre-trained we

Alper Baris CELIK 14 Dec 20, 2022