HDMapNet: A Local Semantic Map Learning and Evaluation Framework

Related tags

Deep LearningHDMapNet
Overview

HDMapNet_devkit

Devkit for HDMapNet.

HDMapNet: A Local Semantic Map Learning and Evaluation Framework

Qi Li, Yue Wang, Yilun Wang, Hang Zhao

[Paper] [Project Page] [5-min video]

Abstract: Estimating local semantics from sensory inputs is a central component for high-definition map constructions in autonomous driving. However, traditional pipelines require a vast amount of human efforts and resources in annotating and maintaining the semantics in the map, which limits its scalability. In this paper, we introduce the problem of local semantic map learning, which dynamically constructs the vectorized semantics based on onboard sensor observations. Meanwhile, we introduce a local semantic map learning method, dubbed HDMapNet. HDMapNet encodes image features from surrounding cameras and/or point clouds from LiDAR, and predicts vectorized map elements in the bird's-eye view. We benchmark HDMapNet on nuScenes dataset and show that in all settings, it performs better than baseline methods. Of note, our fusion-based HDMapNet outperforms existing methods by more than 50% in all metrics. In addition, we develop semantic-level and instance-level metrics to evaluate the map learning performance. Finally, we showcase our method is capable of predicting a locally consistent map. By introducing the method and metrics, we invite the community to study this novel map learning problem. Code and evaluation kit will be released to facilitate future development.

Questions/Requests: Please file an issue or email me at [email protected].

Preparation

  1. Download nuScenes dataset and put it to dataset/ folder.

  2. Install dependencies by running

pip install -r requirement.txt

Vectorization

Run python vis_label.py for demo of vectorized labels. The visualizations are in dataset/nuScenes/samples/GT.

Evaluation

Run python evaluate.py --result_path [submission file] for evaluation. The script accepts vectorized or rasterized maps as input. For vectorized map, We firstly rasterize the vectors to map to do evaluation. For rasterized map, you should make sure the line width=1.

Below is the format for vectorized submission:

-- Whether this submission uses camera data as an input. "use_lidar": -- Whether this submission uses lidar data as an input. "use_radar": -- Whether this submission uses radar data as an input. "use_external": -- Whether this submission uses external data as an input. "vector": true -- Whether this submission uses vector format. }, "results": { sample_token : List[vectorized_line] -- Maps each sample_token to a list of vectorized lines. } } vectorized_line { "pts": List[ ] -- Ordered points to define the vectorized line. "pts_num": , -- Number of points in this line. "type": <0, 1, 2> -- Type of the line: 0: ped; 1: divider; 2: boundary "confidence_level": -- Confidence level for prediction (used by Average Precision) }">
vectorized_submission {
    "meta": {
        "use_camera":   
          
             -- Whether this submission uses camera data as an input.
        "use_lidar":    
           
              -- Whether this submission uses lidar data as an input.
        "use_radar":    
            
               -- Whether this submission uses radar data as an input.
        "use_external": 
             
                -- Whether this submission uses external data as an input.
        "vector":        true   -- Whether this submission uses vector format.
    },
    "results": {
        sample_token 
              
               : List[vectorized_line] -- Maps each sample_token to a list of vectorized lines. } } vectorized_line { "pts": List[
               
                ] -- Ordered points to define the vectorized line. "pts_num": 
                
                 , -- Number of points in this line. "type": <0, 1, 2> -- Type of the line: 0: ped; 1: divider; 2: boundary "confidence_level": 
                 
                   -- Confidence level for prediction (used by Average Precision) } 
                 
                
               
              
             
            
           
          

For rasterized submission, the format is:

-- Whether this submission uses camera data as an input. "use_lidar": -- Whether this submission uses lidar data as an input. "use_radar": -- Whether this submission uses radar data as an input. "use_external": -- Whether this submission uses external data as an input. "vector": false -- Whether this submission uses vector format. }, "results": { sample_token : { -- Maps each sample_token to a list of vectorized lines. "map": [ ], -- Raster map of prediction (C=0: ped; 1: divider 2: boundary). The value indicates the line idx (start from 1). "confidence_level": Array[float], -- confidence_level[i] stands for confidence level for i^th line (start from 1). } } }">
rasterized_submisson {
    "meta": {
        "use_camera":   
        
           -- Whether this submission uses camera data as an input.
        "use_lidar":    
         
            -- Whether this submission uses lidar data as an input.
        "use_radar":    
          
             -- Whether this submission uses radar data as an input.
        "use_external": 
           
              -- Whether this submission uses external data as an input.
        "vector":       false   -- Whether this submission uses vector format.
    },
    "results": {
        sample_token 
            
             : { -- Maps each sample_token to a list of vectorized lines. "map": [
             
              ], -- Raster map of prediction (C=0: ped; 1: divider 2: boundary). The value indicates the line idx (start from 1). "confidence_level": Array[float], -- confidence_level[i] stands for confidence level for i^th line (start from 1). } } } 
             
            
           
          
         
        

Run python export_to_json.py to get a demo of vectorized submission. Run python export_to_json.py --raster for rasterized submission.

Citation

If you found this useful in your research, please consider citing

@misc{li2021hdmapnet,
      title={HDMapNet: A Local Semantic Map Learning and Evaluation Framework}, 
      author={Qi Li and Yue Wang and Yilun Wang and Hang Zhao},
      year={2021},
      eprint={2107.06307},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Tsinghua MARS Lab
MARS Lab at IIIS, Tsinghua University
Tsinghua MARS Lab
Federated Learning Based on Dynamic Regularization

Federated Learning Based on Dynamic Regularization This is implementation of Federated Learning Based on Dynamic Regularization. Requirements Please i

39 Jan 07, 2023
Collaborative forensic timeline analysis

Timesketch Table of Contents About Timesketch Getting started Community Contributing About Timesketch Timesketch is an open-source tool for collaborat

Google 2.1k Dec 28, 2022
A stable algorithm for GAN training

DRAGAN (Deep Regret Analytic Generative Adversarial Networks) Link to our paper - https://arxiv.org/abs/1705.07215 Pytorch implementation (thanks!) -

195 Oct 10, 2022
Language Models Can See: Plugging Visual Controls in Text Generation

Language Models Can See: Plugging Visual Controls in Text Generation Authors: Yixuan Su, Tian Lan, Yahui Liu, Fangyu Liu, Dani Yogatama, Yan Wang, Lin

Yixuan Su 195 Dec 22, 2022
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 126 Jan 06, 2023
Auto grind btdb2 exp for tower

Bloons TD Battles 2 EXP Grinder Auto grind btdb2 exp for towers Setup I suggest checking out every screenshot to see what they are supposed to be, so

Vincent 6 Jul 29, 2022
Code and description for my BSc Project, September 2021

BSc-Project Disclaimer: This repo consists of only the additional python scripts necessary to run the agent. To run the project on your own personal d

Matin Tavakoli 20 Jul 19, 2022
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

This is the official implementation of the following paper: Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Con

ElementAI 217 Jan 01, 2023
A simple version for graphfpn

GraphFPN: Graph Feature Pyramid Network for Object Detection Download graph-FPN-main.zip For training , run: python train.py For test with Graph_fpn

WorldGame 67 Dec 25, 2022
Zero-shot Learning by Generating Task-specific Adapters

Code for "Zero-shot Learning by Generating Task-specific Adapters" This is the repository containing code for "Zero-shot Learning by Generating Task-s

INK Lab @ USC 11 Dec 17, 2021
PyTorch implementation of Deformable Convolution

PyTorch implementation of Deformable Convolution !!!Warning: There is some issues in this implementation and this repo is not maintained any more, ple

Wei Ouyang 893 Dec 18, 2022
Adversarial Graph Augmentation to Improve Graph Contrastive Learning

ADGCL : Adversarial Graph Augmentation to Improve Graph Contrastive Learning Introduction This repo contains the Pytorch [1] implementation of Adversa

susheel suresh 62 Nov 19, 2022
Architecture Patterns with Python (TDD, DDD, EDM)

architecture-traning Architecture Patterns with Python (TDD, DDD, EDM) Chapter 5. 높은 기어비와 낮은 기어비의 TDD 5.2 도메인 계층 테스트를 서비스 계층으로 옮겨야 하는가? 도메인 계층 테스트 def

minsung sim 2 Mar 04, 2022
Pneumonia Detection using machine learning - with PyTorch

Pneumonia Detection Pneumonia Detection using machine learning. Training was done in colab: DEMO: Result (Confusion Matrix): Data I uploaded my datase

Wilhelm Berghammer 12 Jul 07, 2022
📚 Papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks.

papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks. Papermill lets you: parameterize notebooks execute notebooks This

nteract 5.1k Jan 03, 2023
Deep motion transfer

animation-with-keypoint-mask Paper The right most square is the final result. Softmax mask (circles): \ Heatmap mask: \ conda env create -f environmen

9 Nov 01, 2022
UMPNet: Universal Manipulation Policy Network for Articulated Objects

UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation

Columbia Artificial Intelligence and Robotics Lab 33 Dec 03, 2022
This repository contains the code used to quantitatively evaluate counterfactual examples in the associated paper.

On Quantitative Evaluations of Counterfactuals Install To install required packages with conda, run the following command: conda env create -f requi

Frederik Hvilshøj 1 Jan 16, 2022
Quick program made to generate alpha and delta tables for Hidden Markov Models

HMM_Calc Functions for generating Alpha and Delta tables from a Hidden Markov Model. Parameters: a: Matrix of transition probabilities. a[i][j] = a_{i

Adem Odza 1 Dec 04, 2021
a simple, efficient, and intuitive text editor

Oxygen beta a simple, efficient, and intuitive text editor Overview oxygen is a simple, efficient, and intuitive text editor designed as more featured

Aarush Gupta 1 Feb 23, 2022