Pneumonia Detection using machine learning - with PyTorch

Overview

Pneumonia Detection

Pneumonia Detection using machine learning.

Training was done in colab:

Training In Colab


DEMO:

gif

Result (Confusion Matrix):

confusion matrix

Data

I uploaded my dataset to kaggle I used a modified version of this dataset from kaggle. Instead of NORMAL and PNEUMONIA I split the PNEUMONIA dataset to BACTERIAL PNUEMONIA and VIRAL PNEUMONIA. This way the data is more evenly distributed and I can distinguish between viral and bacterial pneumonia. I also combined the validation dataset with the test dataset because the validation dataset only had 8 images per class.

This is the resulting distribution:

data distribution

Processing and Augmentation

I resized the images to 150x150 and because some images already were grayscale I also transformed all the images to grayscale.

Additionaly I applied the following transformations/augmentations on the training data:

transforms.Resize((150, 150)),
transforms.Grayscale(),
transforms.ToTensor(),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.RandomRotation(45)

and those transformations on the test data:

transforms.Resize((150, 150)),
transforms.Grayscale(),
transforms.ToTensor(),

This is the resulting data:

sample images

I also used one-hot encoding for the labels!



Model

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 16, 148, 148]             160
              ReLU-2         [-1, 16, 148, 148]               0
       BatchNorm2d-3         [-1, 16, 148, 148]              32
            Conv2d-4         [-1, 16, 146, 146]           2,320
              ReLU-5         [-1, 16, 146, 146]               0
       BatchNorm2d-6         [-1, 16, 146, 146]              32
         MaxPool2d-7           [-1, 16, 73, 73]               0
            Conv2d-8           [-1, 32, 71, 71]           4,640
              ReLU-9           [-1, 32, 71, 71]               0
      BatchNorm2d-10           [-1, 32, 71, 71]              64
           Conv2d-11           [-1, 32, 69, 69]           9,248
             ReLU-12           [-1, 32, 69, 69]               0
      BatchNorm2d-13           [-1, 32, 69, 69]              64
        MaxPool2d-14           [-1, 32, 34, 34]               0
           Conv2d-15           [-1, 64, 32, 32]          18,496
             ReLU-16           [-1, 64, 32, 32]               0
      BatchNorm2d-17           [-1, 64, 32, 32]             128
           Conv2d-18           [-1, 64, 30, 30]          36,928
             ReLU-19           [-1, 64, 30, 30]               0
      BatchNorm2d-20           [-1, 64, 30, 30]             128
        MaxPool2d-21           [-1, 64, 15, 15]               0
           Conv2d-22          [-1, 128, 13, 13]          73,856
             ReLU-23          [-1, 128, 13, 13]               0
      BatchNorm2d-24          [-1, 128, 13, 13]             256
           Conv2d-25          [-1, 128, 11, 11]         147,584
             ReLU-26          [-1, 128, 11, 11]               0
      BatchNorm2d-27          [-1, 128, 11, 11]             256
        MaxPool2d-28            [-1, 128, 5, 5]               0
          Flatten-29                 [-1, 3200]               0
           Linear-30                 [-1, 4096]      13,111,296
             ReLU-31                 [-1, 4096]               0
          Dropout-32                 [-1, 4096]               0
           Linear-33                 [-1, 4096]      16,781,312
             ReLU-34                 [-1, 4096]               0
          Dropout-35                 [-1, 4096]               0
           Linear-36                    [-1, 3]          12,291
          Softmax-37                    [-1, 3]               0
================================================================
Total params: 30,199,091
Trainable params: 30,199,091
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.09
Forward/backward pass size (MB): 27.95
Params size (MB): 115.20
Estimated Total Size (MB): 143.24
----------------------------------------------------------------

Visualization using Streamlit

The webapp is not hosted because the model is too large. I'd have to host it on a server. This is just to visualize.

Owner
Wilhelm Berghammer
Artificial Intelligence Student @ JKU (1st year)
Wilhelm Berghammer
Experiments for Operating Systems Lab (ETCS-352)

Operating Systems Lab (ETCS-352) Experiments for Operating Systems Lab (ETCS-352) performed by me in 2021 at uni. All codes are written by me except t

Deekshant Wadhwa 0 Sep 06, 2022
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques Installation PyPI pip install colossalai Install

HPC-AI Tech 7.1k Jan 03, 2023
Pointer networks Tensorflow2

Pointer networks Tensorflow2 原文:https://arxiv.org/abs/1506.03134 仅供参考与学习,内含代码备注 环境 tensorflow==2.6.0 tqdm matplotlib numpy 《pointer networks》阅读笔记 应用场景

HUANG HAO 7 Oct 27, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
[CVPR2021 Oral] End-to-End Video Instance Segmentation with Transformers

VisTR: End-to-End Video Instance Segmentation with Transformers This is the official implementation of the VisTR paper: Installation We provide instru

Yuqing Wang 687 Jan 07, 2023
Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising

Deep-Rep-MFIR Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising Publication: Deep Reparametrization of M

Goutam Bhat 39 Jan 04, 2023
Implementation of Perceiver, General Perception with Iterative Attention in TensorFlow

Perceiver This Python package implements Perceiver: General Perception with Iterative Attention by Andrew Jaegle in TensorFlow. This model builds on t

Rishit Dagli 84 Oct 15, 2022
Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification

This repo holds the codes of our paper: Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification, which is ac

Feng Gao 17 Dec 28, 2022
Unofficial PyTorch implementation of TokenLearner by Google AI

tokenlearner-pytorch Unofficial PyTorch implementation of TokenLearner by Ryoo et al. from Google AI (abs, pdf) Installation You can install TokenLear

Rishabh Anand 46 Dec 20, 2022
i3DMM: Deep Implicit 3D Morphable Model of Human Heads

i3DMM: Deep Implicit 3D Morphable Model of Human Heads CVPR 2021 (Oral) Arxiv | Poject Page This project is the official implementation our work, i3DM

Tarun Yenamandra 60 Jan 03, 2023
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

Aladdin Persson 4.7k Jan 08, 2023
Credit fraud detection in Python using a Jupyter Notebook

Credit-Fraud-Detection - Credit fraud detection in Python using a Jupyter Notebook , using three classification models (Random Forest, Gaussian Naive Bayes, Logistic Regression) from the sklearn libr

Ali Akram 4 Dec 28, 2021
Efficient Lottery Ticket Finding: Less Data is More

The lottery ticket hypothesis (LTH) reveals the existence of winning tickets (sparse but critical subnetworks) for dense networks, that can be trained in isolation from random initialization to match

VITA 20 Sep 04, 2022
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
A PoC Corporation Relationship Knowledge Graph System on top of Nebula Graph.

Corp-Rel is a PoC of Corpartion Relationship Knowledge Graph System. It's built on top of the Open Source Graph Database: Nebula Graph with a dataset

Wey Gu 20 Dec 11, 2022
Re-TACRED: Addressing Shortcomings of the TACRED Dataset

Re-TACRED Re-TACRED: Addressing Shortcomings of the TACRED Dataset

George Stoica 40 Dec 10, 2022
GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications

GPOEO GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications. We also implement ODPP [1] as a comparison. [1]

瑞雪轻飏 8 Sep 10, 2022
Einshape: DSL-based reshaping library for JAX and other frameworks.

Einshape: DSL-based reshaping library for JAX and other frameworks. The jnp.einsum op provides a DSL-based unified interface to matmul and tensordot o

DeepMind 62 Nov 30, 2022
A Python library for differentiable optimal control on accelerators.

A Python library for differentiable optimal control on accelerators.

Google 80 Dec 21, 2022